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ABSTRACT

STATISTICAL MACHINE LEARNING FOR COMPLEX CLASSIFICATION PROBLEMS

Mingyuan Zhang

Shivani Agarwal

Classification is a fundamental problem in statistical machine learning. It seeks to classify instances

into several classes. Binary and multiclass classification settings are the most basic and well-studied

settings. Yet, real-world classification problems often involve additional complexities. In this thesis,

we focus on complex classification problems in statistical machine learning by exploring three dimen-

sions of complexity: 1) Complex label space; 2) Complex learning setting; 3) Complex performance

measure. These complexities pose significant challenges in real-world applications and necessitate

the development of novel methodologies that can effectively handle such issues. The goal of my

thesis research is to study these complex classification problems.
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CHAPTER 1

INTRODUCTION

Classification problems represent a fundamental and prevalent challenge in the field of machine

learning, where the objective is to assign one or more predefined labels (categories) to a given input

instance. These problems arise in a diverse array of domains, such as natural language processing,

computer vision, healthcare, and finance, among others. Machine learning algorithms employed to

solve classification tasks have evolved over time, from traditional methods like decision trees, logistic

regression, and support vector machines, to newer approaches involving deep learning.

Despite significant advancements, classification problems continue to pose unique challenges, par-

ticularly when dealing with complex scenarios involving multi-label classification (Zhang and Zhou,

2014), noisy or partial labels (Natarajan et al., 2013; van Rooyen and Williamson, 2017), and non-

decomposable performance measures (Narasimhan et al., 2014, 2015). Developing good and efficient

algorithms that can effectively tackle these complexities is crucial for enhancing the applicability

of machine learning algorithms in real-world settings and addressing emerging challenges across

various domains. In particular, it is desirable to design Bayes consistent algorithms, meaning that

as the size of the training sample grows, the performance (which can be gain or loss) of the learned

classifier converges to the Bayes optimal performance, which is the best possible performance for a

given classification problem. Bayes consistency is an important property for a learning algorithm

because it guarantees that the learned classifier’s performance will improve as more data is collected,

eventually reaching the optimal performance that is theoretically achievable.

In this thesis, we study complex classification problems in statistical machine learning by exploring

three dimensions of complexity:

• Complex label space. This involves a class of machine learning problems where the goal is

to predict structured output objects, rather than simple categorical values as in binary or mul-

ticlass classification. In other words, the label space is composed of complex interdependent
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structures rather than single values. These problems are called structured prediction problems,

and often involve modeling the relationships and dependencies between the elements of the

output structure, which makes them more challenging than traditional prediction tasks. Ex-

amples of structured prediction problems include multi-label classification, sequence labeling,

parsing, image segmentation, and many others. Methods proposed to address structured pre-

diction problems often aim to capture and exploit the dependencies and relationships within

the output structures to make more accurate and coherent predictions.

• Complex learning setting. This refers to scenarios in machine learning that involve addi-

tional challenges or complexities beyond traditional supervised learning tasks. These complex-

ities can arise due to various factors, such as the nature of the data, the learning environment,

or the desired output. Some examples of complex learning settings include but are not limited

to noisy labels, missing or partial labels, imbalanced data, semi-supervised learning, weakly

supervised learning, active learning, transfer learning, online learning, multi-task learning,

and reinforcement learning. These complex learning settings often require specialized algo-

rithms, or adaptations of existing methods to effectively address the challenges they present

and achieve satisfactory performance.

• Complex performance measure. Complex performance measures are also called non-

decomposable performance measures. In contrast to the standard 0-1loss or more general

cost-sensitive losses (which are linear functions of the confusion matrix of a classifier), non-

decomposable performance measures are general (usually nonlinear) functions of the confusion

matrix. Such performance measures take complex forms, and cannot be expressed as the

expectation or sum of a loss on individual examples. These performance measures often involve

intricate calculations that account for dependencies or interactions between different aspects

of the predictions. They are particularly relevant in scenarios where traditional performance

measures (0-1loss or cost-sensitive losses) may not adequately capture the nuances of the

problem at hand. Examples of non-decomposable performance measures include F1 score,

Jaccard measure, H-mean, G-mean, Q-mean, area under the ROC curve (AUC-ROC), area

2



under the Precision-Recall curve (AUC-PR), and others. Designing algorithms to learn good

classifiers for non-decomposable performance measures can be challenging, as they often have

to account for the dependencies and interactions between the predictions of instances.

The objective of this thesis is to investigate classification problems encompassing one or more of the

aforementioned complexities. We adopt a principled and rigorous approach, employing mathemat-

ical formalisms and theoretical analyses to develop algorithms tailored to address these challenges.

Additionally, we offer theoretical guarantees for the devised algorithms, demonstrating their Bayes

consistency properties to ensure optimal performance as the amount of training data increases. We

believe that this study will enhance our understanding of complex classification problems in ma-

chine learning and foster the development of more principled algorithms to effectively tackle these

challenges.

1.1. Organization

Our research was generally organized into the following stages:

1. Literature review: We conducted a literature review in the field of complex classification

problems, focusing on the three dimensions of complexity mentioned earlier. This review

covers both traditional and more recent methods, along with their strengths and weaknesses.

It also identifies existing gaps and open research questions in the field.

2. Problem formulation: Based on the literature review, we selected specific complex classifi-

cation problems that warrant further investigation. We then rigorously defined these problems

and formulated them in mathematical terms. This provides a solid foundation for the subse-

quent development of algorithms and theoretical analyses.

3. Algorithm development: For each of the selected problems, we proposed new algorithms

or adapted existing methods to address the complexities involved. This may involve designing

novel learning techniques or integrating modifications to existing algorithms to make them

more suitable for the specific challenges associated with the problem.
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4. Theoretical analysis: We conducted a thorough theoretical analysis of the proposed algo-

rithms, focusing on their Bayes consistency properties. This involves proving the convergence

of the learned classifiers’ performance to the Bayes optimal performance as the size of the

training sample increases. We also analyzed other aspects of the algorithms, such as their

computational complexity, sample complexity, or generalization bounds.

5. Empirical evaluation: We performed an empirical evaluation of the proposed algorithms on

both synthetic and real-world datasets, comparing their performance with existing methods.

This helps confirm our theoretical findings and demonstrate the practical utility of the devised

algorithms in addressing complex classification problems.

6. Documentation and dissemination: Finally, we documented our findings, detailing the

algorithms, theoretical analyses, and empirical results in a well-structured thesis. Along the

way, we disseminated our research through publications in relevant conferences and engaged

with the broader research community to promote further advancements in the field.

In the rest of this chapter, we will give an overview of the three complexities and our work. This

will serve as a roadmap for the rest of the thesis. In Figure 1.1, we show the works along with their

positions with respect to the three complexities.

In particular, Chapter 2 is our published work Convex Calibrated Surrogates for the Multi-Label

F-Measure. Chapter 3 is our work Multi-Label Learning for Multiple Performance Measures without

Re-training. Chapter 4 is our published work Learning from Noisy Labels with No Change to the

Training Process. Chapter 5 is our work Multiclass Learning from Noisy Labels Using Weighted

Losses. Chapter 6 is our work Consistent Multi-Label Learning from Noisy Labels. Chapter 7 is our

published work Multiclass Learning from Noisy Labels for Non-decomposable Performance Measures.

Chapter 8 summarizes this thesis.

1.2. Overview

Complex Label Space
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Complex Label Space
Complex Learning
Setting

Complex Performance Measure

[1], [2] [3], [4][5], [7]

[6]

Figure 1.1: Overview of this thesis. [1] Chapter 2: Convex Calibrated Surrogates for the Multi-Label
F-Measure (published); [2] Chapter 3: Multi-Label Learning for Multiple Performance Measures
without Re-training; [3] Chapter 4: Learning from Noisy Labels with No Change to the Training
Process (published); [4] Chapter 5: Multiclass Learning from Noisy Labels Using Weighted Losses;
[5] Chapter 6: Consistent Multi-Label Learning from Noisy Labels; [6] Chapter 7: Multiclass Learn-
ing from Noisy Labels for Non-decomposable Performance Measures (published); [7] Foreseeing the
Benefits of Incidental Supervision (published in collaboration with Hangfeng He, Qiang Ning and
Dan Roth; not included in this thesis).
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The concept of complex label space in machine learning arises from the need to handle problems with

structured output objects rather than simple categorical values as in binary or multiclass classifica-

tion. In these problems, the label space is composed of intricate, interdependent structures, making

the prediction task more challenging than traditional classification tasks. This class of machine

learning problems is often referred to as structured prediction problems. Multi-label classification is

a prominent subclass of such problems. In multi-label classification, each instance can be associated

with multiple labels (tags) simultaneously. This contrasts with the binary or multiclass classifica-

tion, where each instance is assigned to a single class. Multi-label classification has applications

in text categorization, image annotation, and many others (Zhang and Zhou, 2014). Due to the

complex nature of multi-label classification, a number of performance measures have been proposed

to evaluate multi-label classifiers. They include Hamming loss, subset 0-1loss (subset accuracy),

precision, recall, F1-measure (Dembczynski et al., 2010b; Wu and Zhou, 2017; Menon et al., 2019).

Complex Learning Setting

Complex learning settings in machine learning refer to scenarios that involve additional challenges

or complexities beyond traditional supervised learning tasks. These complexities can arise due to

various factors, such as the nature of the data, the learning environment, or the desired output. The

background of complex learning settings can be traced back to the need to address a diverse range

of real-world problems, which often do not fit neatly into the framework of standard supervised

learning. Learning from noisy labels is an important family of problems with complex learning

settings (Natarajan et al., 2013; van Rooyen and Williamson, 2017). In real-world datasets, labels

can often be noisy, incorrect, or ambiguous. When learning from noisy labels, the provided labels

in the training data may not always be reliable, potentially leading to a decline in the performance

of the machine learning model. This unreliability can arise from various factors, such as errors in

human labeling, misalignment between labels and corresponding data, or noise introduced during

the data collection process. Learning from such data requires algorithms that can handle and

account for label noise while still building accurate and robust models. It has become a rapidly

growing area of interest in recent years (Frénay and Verleysen, 2014; Song et al., 2023; Han et al.,
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2020).

Complex Performance Measure

Complex performance measures, also known as non-decomposable performance measures, play a

crucial role in evaluating the effectiveness of machine learning algorithms, particularly in scenarios

where standard performance measures such as 0-1 loss or cost-sensitive losses may not adequately

capture the nuances of a given problem. Such performance measures are useful in information

retrieval, class imbalance settings, and others.

Complex Label Space: Convex Calibrated Surrogates for the Multi-Label F-Measure

(Chapter 2; Zhang et al. (2020))

The F -measure is a widely used performance measure for multi-label classification, where multiple

labels can be active in an instance simultaneously (e.g. in image tagging, multiple tags can be active

in any image). In particular, the F -measure explicitly balances recall (fraction of active labels

predicted to be active) and precision (fraction of labels predicted to be active that are actually so),

both of which are important in evaluating the overall performance of a multi-label classifier. As with

most discrete prediction problems, however, directly optimizing the F -measure is computationally

hard. In this work, we explore the question of designing convex surrogate losses that are calibrated

for the F -measure – specifically, that have the property that minimizing the surrogate loss yields

(in the limit of sufficient data) a Bayes optimal multi-label classifier for the F -measure. We show

that the F -measure for an s-label problem, when viewed as a 2s × 2s loss matrix, has rank at

most s2 +1, and apply a result of Ramaswamy et al. (2014) to design a family of convex calibrated

surrogates for the F -measure. The resulting surrogate risk minimization algorithms can be viewed

as decomposing the multi-label F -measure learning problem into s2 + 1 binary class probability

estimation problems. We also provide a quantitative regret transfer bound for our surrogates, which

allows any regret guarantees for the binary problems to be transferred to regret guarantees for the

overall F -measure problem, and discuss a connection with the algorithm of Dembczynski et al.

(2013). Our experiments confirm our theoretical findings.
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Complex Label Space: Multi-Label Learning for Multiple Performance Measures with-

out Re-training (Chapter 3)

Unlike binary or multiclass classification, where 0-1loss is the standard performance measure, there

is no such canonical performance measure for multi-label classification, where multiple labels can

be active in an instance simultaneously (e.g., in image tagging, multiple tags can be active in any

image). Various performance measures have been proposed to assess multi-label classifiers. These

include Hamming loss, subset 0-1loss (subset accuracy), precision, recall, and F1-measure. It has

been observed that different algorithms tend to perform variably across different performance mea-

sures and there has been progress in understanding the reasons behind these performance variations,

identifying which algorithms excel under specific performance measures, and finding connections be-

tween different performance measures. Still, there is a lack of principled understanding of whether it

is possible to design a multi-label learning algorithm such that it can optimize several performance

measures at the same time, meaning that it is not needed to train for different performance measures

separately. In this work, we study this problem by utilizing the theory of convex calibrated surro-

gates. We first show that it is possible to design one convex calibrated surrogate with respect to

several performance measures so that one can train using the surrogate once and then apply different

post-processing functions to optimize different performance measures. Then we show how to opti-

mize Hamming loss, precision, recall and Top@k using a learned scoring function for Fβ-measure.

Finally, we provide a regret transfer bound for our method to show it is Bayes consistent.

Complex Learning Setting: Learning from Noisy Labels with No Change to the Train-

ing Process (Chapter 4; Zhang et al. (2021))

There has been much interest in recent years in developing learning algorithms that can learn accu-

rate classifiers from data with noisy labels. A widely-studied noise model is that of class-conditional

noise (CCN), wherein a label y is flipped to a label ỹ with some associated noise probability that

depends on both y and ỹ. In the multiclass setting, all previously proposed algorithms under the

CCN model involve changing the training process, by introducing a ‘noise-correction’ to the surro-

gate loss to be minimized over the noisy training examples. In this work, we show that this is really
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unnecessary: one can simply perform class probability estimation (CPE) on the noisy examples, e.g.

using a standard (multiclass) logistic regression algorithm, and then apply noise-correction only in

the final prediction step. This means that the training algorithm itself does not need any change,

and one can simply use standard off-the-shelf implementations with no modification to the code

for training. Our approach can handle general multiclass loss matrices, including the usual 0-1

loss but also other losses such as those used for ordinal regression problems. We also provide a

quantitative regret transfer bound, which bounds the target regret on the true distribution in terms

of the CPE regret on the noisy distribution; in doing so, we extend the notion of strong properness

introduced for binary losses by Agarwal (2014) to the multiclass case. Our bound suggests that the

sample complexity of learning under CCN increases as the noise matrix approaches singularity. We

also provide fixes and potential improvements for noise estimation methods that involve computing

anchor points. Our experiments confirm our theoretical findings.

Complex Learning Setting: Multiclass Learning from Noisy Labels Using Weighted

Losses (Chapter 5)

In many machine learning applications, the labels provided with the training data can be noisy. As

a result, there has been growing interest in recent years in developing learning algorithms capable of

learning good classifiers from data with noisy labels. While a number of Bayes consistent algorithms

have been proposed for multiclass learning with noisy labels, there are still several unresolved ques-

tions in this area. For example, most of the noise-corrected algorithms proposed so far require the

use of smooth surrogate losses that can estimate class probabilities (such as the multiclass logistic

loss), effectively ruling out hinge-type losses used in support vector type algorithms. So, an open

question is whether one can design noise-corrected multiclass algorithms that allow for such losses.

In this work, we close this question by solving a more general open problem. Specifically, we show

how to design a surrogate loss for a general multiclass loss L by taking a weighted combination of

surrogate losses for the standard 0-1 loss. Our method works with both smooth surrogate losses and

non-smooth surrogate losses, allowing for margin-based losses such as those used in various formula-

tions of multiclass support vector type algorithms. In addition, the proposed method preserves the
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convexity of the underlying surrogate loss, a desirable property to allow for efficient optimization.

We also provide theoretical results to show the proposed method is Bayes consistent, and provide an

estimation error bound. Then, we apply the proposed method to extend the weighted loss method

proposed in Natarajan et al. (2013) for binary learning from noisy labels to multiclass learning from

noisy labels. Finally, we also apply the proposed method to solve problems in multiclass learning

with a reject option; in doing so, we recover several results of Cao et al. (2022).

Complex Label Space and Learning Setting: Foreseeing the Benefits of Incidental Su-

pervision (He et al. (2021); not included in this thesis)

In a collaborative empirical study (He et al., 2021), we explore the possibility of quantifying the

benefits of various types of incidental signals (such as noisy labels, partial/missing labels, knowledge-

based constraints, cross-domain and cross-task annotations) for a specific target task within a single

framework, without conducting combinatorial experiments. We propose a unified PAC-Bayesian mo-

tivated informativeness measure that characterizes the uncertainty reduction provided by incidental

supervision signals.

Complex Label Space and Learning Setting: Consistent Multi-Label Learning from

Noisy Labels (Chapter 6)

In many applications of machine learning, the training data comes with noisy labels; this issue is even

more pronounced in multi-label problems, where multiple labels/tags can be active in an instance

simultaneously. In recent years, many consistent noise-corrected algorithms have been designed for

binary and multiclass learning under class-conditional noise (CCN) and other noise models; however,

relatively few consistent algorithms exist for multi-label learning, and those that do are under the

very simple independent flipping noise (IFN) model. In this work, we develop three consistent

noise-corrected multi-label learning algorithms: Noise-Corrected Plug-in (NCPLUG) algorithm for

Hamming loss under IFN; Noise-Corrected Exact F-measure Plug-in (NCEFP) algorithm for multi-

label F1-measure under general CCN; and Noise-Corrected Output Coding (NCOC) algorithm for

general low-rank multi-label losses under general CCN. We provide quantitative regret transfer
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bounds for all three algorithms to establish their consistency. We also propose a new family of

structured multi-label noise models that we term Similar-Tag Switching Noise (STSN) models;

STSN models are a special case of CCN that require fewer parameters and enable fast computation,

and moreover, unlike IFN, they also capture some correlations among tags. Our experiments confirm

the effectiveness of our algorithms in correcting for multi-label noise.

Complex Performance Measure and Learning Setting: Multiclass Learning from Noisy

Labels for Non-decomposable Performance Measures (Chapter 7; Zhang and Agarwal

(2024))

There has been much interest in recent years in learning good classifiers from data with noisy

labels. Most work on learning from noisy labels has focused on standard loss-based performance

measures. However, many machine learning problems require using non-decomposable performance

measures which cannot be expressed as the expectation or sum of a loss on individual examples;

these include for example the H-mean, Q-mean and G-mean in class imbalance settings, and the

Micro F1 in information retrieval. In this work, we design algorithms to learn from noisy labels for

two broad classes of multiclass non-decomposable performance measures, namely, monotonic convex

and ratio-of-linear, which encompass all the above examples. Our work builds on the Frank-Wolfe

and Bisection based methods of Narasimhan et al. (2015). In both cases, we develop noise-corrected

versions of the algorithms under the widely studied family of class-conditional noise models. We

provide regret (excess risk) bounds for our algorithms, establishing that even though they are

trained on noisy data, they are Bayes consistent in the sense that their performance converges to

the optimal performance w.r.t. the clean (non-noisy) distribution. Our experiments demonstrate

the effectiveness of our algorithms in handling label noise.

Additional Work During Ph.D.: Bayes Consistency vs. H-Consistency: The Interplay

between Surrogate Loss Functions and the Scoring Function Class (Zhang and Agarwal

(2020); not included in this thesis)

A fundamental question in multiclass classification concerns understanding the consistency prop-
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erties of surrogate risk minimization algorithms, which minimize a (often convex) surrogate to the

multiclass 0-1 loss. In particular, the framework of calibrated surrogates has played an important

role in analyzing Bayes consistency of such algorithms, i.e. in studying convergence to a Bayes

optimal classifier (Zhang, 2004a,b; Tewari and Bartlett, 2007). However, follow-up work has sug-

gested this framework can be of limited value when studying H-consistency ; in particular, concerns

have been raised that even when the data comes from an underlying linear model, minimizing

certain convex calibrated surrogates over linear scoring functions fails to recover the true model

(Long and Servedio, 2013). In this work, we investigate this apparent conundrum. We find that

while some calibrated surrogates can indeed fail to provide H-consistency when minimized over a

natural-looking but naïvely chosen scoring function class F , the situation can potentially be reme-

died by minimizing them over a more carefully chosen class of scoring functions F . In particular,

for the popular one-vs-all hinge and logistic surrogates, both of which are calibrated (and therefore

provide Bayes consistency) under realizable models, but were previously shown to pose problems for

realizable H-consistency, we derive a form of scoring function class F that enables H-consistency.

WhenH is the class of linear models, the class F consists of certain piecewise linear scoring functions

that are characterized by the same number of parameters as in the linear case, and minimization over

which can be performed using an adaptation of the min-pooling idea from neural network training.

Our experiments confirm that the one-vs-all surrogates, when trained over this class of nonlinear

scoring functions F , yield better linear multiclass classifiers than when trained over standard linear

scoring functions.
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1.3. List of Publications Related to This Thesis/Work Done During Ph.D.

• Mingyuan Zhang · Shivani Agarwal

Multiclass Learning from Noisy Labels for Non-decomposable Performance Measures

In Proceedings of the 27th International Conference on Artificial Intelligence and Statistics

(AISTATS), 2024.

• Hangfeng He · Mingyuan Zhang · Qiang Ning · Dan Roth

Foreseeing the Benefits of Incidental Supervision

In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

(EMNLP), 2021.

• Mingyuan Zhang · Jane Lee · Shivani Agarwal

Learning from Noisy Labels with No Change to the Training Process

In Proceedings of the 38th International Conference on Machine Learning (ICML), 2021.

• Mingyuan Zhang · Shivani Agarwal

Bayes Consistency vs. H-Consistency: The Interplay between Surrogate Loss Functions and

the Scoring Function Class

In Advances in Neural Information Processing Systems (NeurIPS), 2020. Spotlight paper.

• Mingyuan Zhang · Harish Guruprasad Ramaswamy · Shivani Agarwal

Convex Calibrated Surrogates for the Multi-Label F-Measure

In Proceedings of the 37th International Conference on Machine Learning (ICML), 2020.

Beginning with the next chapter, we present our work in detail. Each chapter is designed to be

self-contained, allowing it to be read independently of the others.
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CHAPTER 2

COMPLEX LABEL SPACE: CONVEX CALIBRATED SURROGATES FOR THE

MULTI-LABEL F-MEASURE

Complex Label Space
Complex Learning
Setting

Complex Performance Measure

⋆ This work

Figure 2.1: Position of Convex Calibrated Surrogates for the Multi-Label F-Measure in the thesis.

This chapter was previously published as Mingyuan Zhang, Harish Guruprasad Ramaswamy, and

Shivani Agarwal. Convex calibrated surrogates for the multi-label f-measure. In Proceedings of the

37th International Conference on Machine Learning, volume 119, pages 11246–11255. PMLR, 2020.

As the sole first author, I developed most of the results (both theoretical and experimental) in this

chapter.

In this chapter, we start our discussion of the first dimension of complexities: complex label spaces.

We focus on multi-label classification problems and show how to design consistent algorithms for

the multi-label F -measure using convex calibrated surrogates.
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2.1. Background of Complex Label Space

In machine learning, the notion of complex label space emerges from the requirement to tackle

problems involving structured output objects instead of categorical values in binary or multiclass

classification. In such problems, the label space consists of interdependent structures, which makes

the prediction task more demanding compared to traditional classification tasks. These types of

machine learning problems are known as structured prediction problems.

The background of structured predictions can be traced back to the emergence of various machine

learning problems that require a more sophisticated output structure than just a single label. These

tasks include:

Multi-label classification: In multi-label classification, each instance can be associated with

multiple labels (tags) simultaneously. A good example is that of image tagging, where several tags

(such as sky, sand, water) can be active in the same image. This contrasts with the traditional

multiclass classification, where each instance is assigned to a single class. Multi-label classification

also has applications in text categorization and others.

Sequence labeling: In sequence labeling tasks, the goal is to assign a label to each element in a

sequence while considering the dependencies between the elements. Examples of sequence labeling

tasks include part-of-speech tagging and named entity recognition in natural language processing.

Parsing: Parsing (also known as syntax analysis, or syntactic analysis) is the process of analyzing

and assigning syntactic structures to sentences or sequences of symbols in natural language pro-

cessing, computer languages, or bioinformatics. For example, syntactic parsing in computational

linguistics involves determining the grammatical structure of a sentence and assigning a parse tree

to represent the hierarchical relationships among the words.

Image segmentation: In computer vision, image segmentation is the process of partitioning an

image into semantically meaningful regions. This task involves assigning labels for individual pixels

or regions, taking into account the spatial dependencies between them.
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As the need to handle structured prediction problems increased, researchers began developing meth-

ods that could effectively model the relationships and dependencies between the elements of the out-

put structure. Early methods, such as conditional random fields (Lafferty et al., 2001), max-margin

markov networks (Taskar et al., 2003; Bartlett et al., 2004; Collins et al., 2008), and structured

support vector machines (Tsochantaridis et al., 2005; Finley and Joachims, 2008), were proposed to

address structured prediction tasks, and these methods paved the way for more advanced techniques

in later years.

The study of structured prediction problems continues to be an active area of research as new

challenges emerge and the need for more sophisticated models and algorithms grows. Recent ad-

vancements in deep learning, such as convolutional neural networks, recurrent neural networks, and

transformers, have also contributed significantly to tackling problems with complex label spaces.

2.2. Introduction

2.2.1. Background and Our Contributions

The Fβ-measure is a widely used performance measure for multi-label classification (MLC) problems.

In particular, in an MLC problem, multiple labels can be active in an instance simultaneously; a

good example is that of image tagging, where several tags (such as sky, sand, water) can be active

in the same image. In such problems, when evaluating the performance of a classifier on a particular

instance, it is important to balance the recall of the classifier on the given instance, i.e. the fraction

of active labels for that instance that are correctly predicted as such, and the precision of the

classifier on the instance, i.e. the fraction of labels predicted to be active for that instance that are

actually so. The Fβ-measure accomplishes this by taking the (possibly weighted) harmonic mean

of these two quantities.

Unfortunately, as with most discrete prediction problems, optimizing the Fβ-measure directly during

training is computationally hard. Consequently, one generally settles for some form of approxima-

tion. One approach is to simply treat the labels as independent, and train a separate binary classifier

for each label; this is sometimes referred to as the binary relevance (BR) approach. Of course, this

16



ignores the fact that labels can have correlations among them (e.g. sky and cloud may be more

likely to co-occur than sky and computer). Several other approaches have been proposed in recent

years (Dembczynski et al., 2013; Koyejo et al., 2015; Wu and Zhou, 2017; Pillai et al., 2017).

In this work, we turn to the theory of convex calibrated surrogate losses – which has yielded

convex risk minimization algorithms for several other discrete prediction problems in recent years

(Bartlett et al., 2006; Zhang, 2004b; Tewari and Bartlett, 2007; Steinwart, 2007; Duchi et al., 2010;

Gao and Zhou, 2013; Ramaswamy et al., 2014, 2015) – to design principled surrogate risk mini-

mization algorithms for the multi-label Fβ-measure. In particular, for an MLC problem with s

tags, the total number of possible labelings of an instance is 2s (each tag can be active or inactive).

Viewing the Fβ-measure as (one minus) a 2s× 2s loss matrix, we show that this matrix has rank at

most s2 + 1, and apply the results of Ramaswamy et al. (2014) to design an output coding scheme

that reduces the Fβ learning problem to a set of s2 + 1 binary class probability estimation (CPE)

problems. By using a suitable binary surrogate risk minimization algorithm (such as binary logistic

regression) for these binary problems, we effectively construct a (s2 + 1)-dimensional convex cali-

brated surrogate loss for the Fβ-measure. We also give a quantitative regret transfer bound for the

constructed surrogate, which allows us to transfer any regret guarantees for the binary subproblems

to guarantees on Fβ-regret for the overall MLC problem. In particular, this means that using a

consistent learner for the binary problems yields a consistent learner for the MLC problem (whose

Fβ-regret goes to zero as the training sample size increases).

Our algorithm is related to the plug-in algorithm of Dembczynski et al. (2013), which also estimates

s2 + 1 statistics of the underlying distribution. Dembczynski et al. (2013) estimate these statistics

by reducing the Fβ maximization problem to s multiclass CPE problems, each with at most s + 1

classes (plus one binary CPE problem); we do so by reducing the problem to s2 + 1 binary CPE

problems. As we show, both algorithms effectively estimate the same s2 + 1 statistics, and indeed,

both perform similarly in experiments. Interestingly, the algorithm of Dembczynski et al. (2013),

while motivated primarily by the plug-in approach, can also be viewed as minimizing a certain

convex calibrated surrogate loss (different from ours); conversely, our algorithm, while motivated
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primarily by the convex calibrated surrogates approach, can also be viewed as a plug-in algorithm.

Our study brings out interesting connections between the two approaches; in addition, to the best

our knowledge, our analysis is the first to provide a quantitative regret transfer bound for calibrated

surrogates for the Fβ-measure.

2.2.2. Notation

For an integer n, we denote by [n] the set of integers {1, . . . , n}, and by ∆n the probability simplex

{p ∈ Rn+ :
∑n

y=1 py = 1}. For a vector a, we denote by ∥a∥p the Lp norm of a, and by aj the

j-indexed entry of a. For a matrix A, we denote by ∥A∥p the induced p-norm of A, and by ay the

y-indexed column vector of A. ayj (or ay,j) is the j-indexed entry of ay. Indicator function is 1(·).

2.2.3. Related Work

There has been much work on multi-label learning, learning with the Fβ-measure, and convex

calibrated surrogates. Below we briefly discuss work that is most related to our study. For detailed

surveys on multi-label learning, we refer the reader to Zhang and Zhou (2014) and Pillai et al.

(2017).

Bayes optimal multi-label classifiers. In an elegant study, Dembczynski et al. (2011) studied

in detail the form of a Bayes optimal multi-label classifier for the F1-measure. In particular, they

showed that, for an s-label MLC problem, given a certain set of s2+1 statistics of the true conditional

label distribution (distribution over 2s labelings), one can compute a Bayes optimal classifier for the

F1-measure in O(s3) time. Their result extends to general Fβ-measures. Bayes optimal classifiers

have also been studied for other MLC performance measures, such as Hamming loss and subset 0-1

loss (Dembczynski et al., 2010a).

Consistent algorithms for multi-label learning. Dembczynski et al. (2013) extended and

operationalized the results of Dembczynski et al. (2011) by providing a consistent plug-in MLC

algorithm for the Fβ-measure. Specifically, they showed that the s2 +1 statistics of the conditional

label distribution needed to compute a Bayes optimal classifier can be estimated via s multiclass

CPE problems, each with at most s + 1 classes, plus one binary CPE problem; the statistics
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estimated by solving these CPE problems can then be plugged into the O(s3)-time procedure of

Dembczynski et al. (2011) to produce a consistent plug-in algorithm termed the exact F-measure

plug-in (EFP) algorithm. Consistent learning algorithms have also been studied for other multi-

label performance measures (Gao and Zhou, 2013; Koyejo et al., 2015).1 The simple approach of

learning an independent binary classifier for each of the s labels, known as binary relevance (BR),

is known to yield a consistent algorithm for the Hamming loss; it also yields a consistent algorithm

for the Fβ-measure under the assumption of conditionally independent labels, but can be arbitrarily

bad otherwise (Dembczynski et al., 2011).

Large-margin algorithms for multi-label learning. Several studies have considered large-

margin algorithms for multi-label learning with the Fβ-measure. These include the reverse multi-

label (RML) and sub-modular multi-label (SML) algorithms of Petterson and Caetano (2010, 2011),

which make use of the StructSVM framework (Tsochantaridis et al., 2005), and more recently, the

label-wise and instance-wise margin optimization (LIMO) algorithm due to Wu and Zhou (2017),

which aims to simultaneously optimize several different multi-label performance measures. The

RML and SML algorithms were proven to be inconsistent for the Fβ-measure and shown to be

outperformed by the EFP algorithm by Dembczynski et al. (2013). We include a comparison with

LIMO in our experiments.

Multivariate Fβ-measure for binary classification. The Fβ-measure is also used as a mul-

tivariate performance measure in binary classification tasks with significant class imbalance. This

use of the Fβ-measure is related to, but distinct from, the use of the Fβ-measure in MLC problems.

Several approaches have been proposed that aim to optimize the multivariate Fβ-measure in binary

classification (Joachims, 2005; Ye et al., 2012; Parambath et al., 2014).

Convex calibrated surrogates. Convex surrogate losses are frequently used in machine learn-
1Note that while the study of Koyejo et al. (2015) also includes the Fβ-measure (among other performance mea-

sures), their study is in the context of what has been referred to as the ‘expected utility maximization’ (EUM)
framework; in contrast, our study is in the context of what has been referred to as the ‘decision-theoretic analysis’
(DTA) framework. Their results are generally incomparable to ours. (In particular, under the EUM framework,
Koyejo et al. (2015) showed that a thresholding approach leads to Bayes optimal performance; on the contrary, under
the DTA framework, it was shown by Dembczynski et al. (2011) that a thresholding approach cannot be optimal for
general distributions.)

19



ing to design computationally efficient learning algorithms. The notion of calibrated surrogate

losses, which ensures that minimizing the surrogate loss can (in the limit of sufficient data) re-

cover a Bayes optimal model for the target discrete loss, was initially studied in the context of

binary classification (Bartlett et al., 2006; Zhang, 2004a) and multiclass 0-1 classification (Zhang,

2004b; Tewari and Bartlett, 2007). In recent years, calibrated surrogates have been designed for

several more complex learning problems, including general multiclass problems and certain types of

subset ranking and multi-label problems (Steinwart, 2007; Duchi et al., 2010; Gao and Zhou, 2013;

Ramaswamy et al., 2013, 2014, 2015). In our work, we will make use of a result of Ramaswamy et al.

(2014), who designed convex calibrated surrogates based on output coding for multiclass problems

with low-rank loss matrices.

2.2.4. Organization

Section 2.3 gives preliminaries and background. Section 2.4 gives our convex calibrated surrogates for

the Fβ-measure; Section 2.5 provides a corresponding regret transfer bound. Section 2.6 discusses

the relationship with the plug-in algorithm of Dembczynski et al. (2013). Section 2.7 provides

experimental evaluations of our algorithm. Section 2.8 concludes this work.

2.3. Preliminaries and Background

2.3.1. Problem Setup

Multi-label classification (MLC). In an MLC problem, there is an instance space X , and a set of

s labels or ‘tags’ L = [s] := {1, . . . , s} that can be associated with each instance in X . For example,

in image tagging, X is the set of possible images, and L is a set of s pre-defined tags (such as sky,

cloud, water etc) that can be associated with each image. The learner is given a training sample

S = {(x1,y1), . . . , (xm,ym)} ∈ (X × {0, 1}s)m, where the labeling yi ∈ {0, 1}s indicates which of

the s tags are active in instance xi (specifically, yij = 1 denotes that tag j is active in instance xi,

and yij = 0 denotes it is inactive). The goal is to learn from these examples a multi-label classifier

h : X→{0, 1}s which, given a new instance x ∈ X , predicts which tags are active or inactive via

h(x) ∈ {0, 1}s.

Fβ-measure. For any β > 0, the Fβ-measure evaluates the quality of an MLC prediction as follows.
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Given a true labeling y ∈ {0, 1}s and a predicted labeling ŷ ∈ {0, 1}s, the recall and precision are

given by

rec(y, ŷ) =

∑s
j=1 yj ŷj

∥y∥1
; prec(y, ŷ) =

∑s
j=1 yj ŷj

∥ŷ∥1
.

In words, the recall measures the fraction of active tags that are predicted correctly, and the precision

measures the fraction of tags predicted as active that are actually so. The Fβ-measure balances

these two quantities by taking their (weighted) harmonic mean:

Fβ(y, ŷ) =

((
β2

1+β2

) 1

rec(y, ŷ)
+
(

1
1+β2

) 1

prec(y, ŷ)

)−1

=
(1 + β2)

∑s
j=1 yj ŷj

β2∥y∥1 + ∥ŷ∥1
. (2.1)

Clearly, 0 ≤ Fβ(y, ŷ) ≤ 1. Higher values of the Fβ-measure correspond to better quality predictions.

We will take 0
0 = 1, so that when y = ŷ = 0, we have Fβ(0,0) = 1. The most commonly used

instantiation is the F1-measure, which weighs recall and precision equally; other commonly used

variants include the F2-measure, which weighs recall more heavily than precision, and the F0.5-

measure, which weighs precision more heavily than recall.

Learning goal. Assuming that training examples are drawn IID from some underlying probability

distribution D on X × {0, 1}s, it is natural then to measure the quality of a multi-label classifier

h : X→{0, 1}s by its Fβ-generalization accuracy :2

accFβ

D [h ] = E(x,y)∼D[Fβ(y,h(x)) ] .

The Bayes Fβ-accuracy is then the highest possible value of the Fβ-generalization accuracy for D:

accFβ ,∗
D = sup

h:X→{0,1}s
accFβ

D [h ] .

The Fβ-regret of a multi-label classifier h is then the difference between the Bayes Fβ-accuracy and
2Note that our focus is on instance-averaged Fβ performance (Zhang and Zhou, 2014).
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the Fβ-accuracy of h:

regretFβ

D [h ] = accFβ ,∗
D − accFβ

D [h ] .

Our goal will be to design consistent algorithms for the Fβ-measure, i.e. algorithms whose Fβ-regret

converges (in probability) to zero as the number of training examples increases. In particular,

since we cannot maximize the (discrete) Fβ-measure directly, we would like to design consistent

algorithms that maximize a concave surrogate performance measure – or equivalently, minimize a

convex surrogate loss – instead. For this, we will turn to the theory of convex calibrated surrogates.

2.3.2. Convex Calibrated Surrogates for Multiclass Problems

Here we review the theory of convex calibrated surrogates for multiclass classification problems, and

in particular, the result of Ramaswamy et al. (2014) for low-rank multiclass loss matrices that we

will use in our work. We will apply the theory to the multi-label Fβ-measure in Section 2.4.

Multiclass classification. Consider a standard multiclass (not multi-label) learning problem with

instance space X and label space Y = [n] (i.e., n classes). Let L ∈ Rn×n+ be a loss matrix whose

(y, ŷ)-th entry ℓy,ŷ = ℓ(y, ŷ) (for each y, ŷ ∈ [n]) specifies the loss incurred on predicting ŷ when

the true label is y (the 0-1 loss L0-1 is a special case with ℓ0-1
y,ŷ = 1(ŷ ̸= y)). Then, given a training

sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m with examples drawn IID from some underlying

probability distribution D on X × Y, the performance of a classifier h : X→Y is measured by

its L-generalization error erLD[h] = E(x,y)∼D[ ℓy,h(x) ], or its L-regret regretLD[h] = erLD[h] − erL,∗D ,

where erL,∗D = infh:X→Y erLD[h] is the Bayes L-error for D. A learning algorithm that maps training

samples S to classifiers hS is said to be (universally) L-consistent if for all D and for S ∼ Dm,

regretLD[hS ]
P−→0 as m→∞.

Surrogate risk minimization and calibrated surrogates. Since minimizing the discrete loss

L directly is computationally hard, a common algorithmic framework is to minimize a surrogate

loss ψ : [n]×Rd→R+ for some suitable d ∈ Z+. In particular, given a multiclass training sample S
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as above, one learns a d-dimensional ‘scoring’ function fS : X→Rd by solving

minf
∑m

i=1 ψ(yi, f(xi))

over a suitably rich class of functions f : X→Rd; and then returns hS = decode◦fS for some suitable

mapping decode : Rd→[n]. In practice, the surrogate ψ is often chosen to be convex in its second

argument to enable efficient minimization. It is known that if the minimization is performed over

a universal function class (with suitable regularization), then the resulting algorithm is universally

ψ-consistent, i.e. that the ψ-regret converges to zero: regretψD[fS ] = erψD[fS ] − erψ,∗D
P−→0 as m→∞

(where erψD[f ] = E(x,y)∼D[ψ(y, f(x)) ] is the ψ-generalization error of f and erψ,∗D = inff :X→Rd erψD[f ]

is the Bayes ψ-error). The surrogate ψ, together with the mapping decode, is said to be L-calibrated

if this also implies L-consistency, i.e. if

regretψD[fS ]
P−→0 =⇒ regretLD[decode ◦ fS ]

P−→0 .

Thus, given a target loss L, the task of designing an L-consistent algorithm reduces to designing a

convex L-calibrated surrogate-mapping pair (ψ, decode); the resulting surrogate risk minimization

algorithm (implemented in a universal function class with suitable regularization) is then universally

L-consistent.

Result of Ramaswamy et al. (2014) for low-rank loss matrices. The result of

Ramaswamy et al. (2014) effectively decomposes multiclass problems into a set of binary CPE prob-

lems; to describe the result, we will need the following definition for binary losses:

Definition 2.1 (Strictly proper composite binary losses (Reid and Williamson, 2010)). A binary

loss ϕ : {±1} × R→R+ is strictly proper composite with underlying (invertible) link function

γ : [0, 1]→R if for all q ∈ [0, 1] and u ̸= γ(q) ∈ R:

Ey∼Bin±1(q)

[
ϕ(y, u)− ϕ(y, γ(q))

]
> 0 ,
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where y ∼ Bin±1(q) denotes a {±1}-valued random variable that takes value +1 with probability q

and value −1 with probability 1− q.

Intuitively, minimizing a strictly proper composite binary loss allows one to recover accurate class

probability estimates for binary CPE problems: the learned real-valued score is simply inverted via

γ−1 (Reid and Williamson, 2010).

We can now state the result of Ramaswamy et al. (2014), which for multiclass loss matrices L of

rank r, gives a family of r-dimensional convex L-calibrated surrogates defined in terms of strictly

proper composite binary losses as follows (result specialized here to the case of square loss matrices,

and stated with a small change in normalization):

Theorem 2.1 (Ramaswamy et al. (2014)). Let L ∈ Rn×n+ be a rank-r multiclass loss matrix, with

ℓy,ŷ = a⊤y bŷ for some a1, . . . ,an,b1, . . . ,bn ∈ Rr. Let ϕ : {±1} × R→R+ be any strictly proper

composite binary loss, with underlying link function γ : [0, 1]→R. Define a multiclass surrogate

ψ : [n]× Rr→R+ and mapping decode : Rr→[n] as follows:

ψ(y,u) =
r∑
j=1

(
ãyjϕ(+1, uj) + (1− ãyj)ϕ(−1, uj)

)

decode(u) ∈ argmin
ŷ∈[n]

r∑
j=1

b̃ŷjγ
−1(uj) + cŷ ,

where

ãyj =
ayj − amin

amax − amin
(∈ [0, 1])

b̃ŷj = (amax − amin) · bŷj

cŷ = amin
∑r

j=1bŷj

amin = min
y,j

ayj

amax = max
y,j

ayj .

Then (ψ, decode) is L-calibrated.
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The above result effectively decomposes the multiclass problem into r binary CPE problems, where

the labels for these CPE problems can themselves be given as probabilities in [0, 1] rather than

binary values (see Ramaswamy et al. (2014) for details). For our purposes, we will use the standard

binary logistic loss for the binary CPE problems, which is known to be strictly proper composite

(see Section 2.4 below for more details).

2.4. Convex Calibrated Surrogates for Fβ

In order to construct convex calibrated surrogates – and corresponding surrogate risk minimization

algorithms – for the multi-label Fβ-measure, we will start by viewing the multi-label learning prob-

lem as a giant multiclass classification problem with n = 2s classes (this is only for the purpose

of analysis and derivation of the surrogates; as we will see, the actual algorithms we will obtain

will require learning only O(s2) real-valued score functions). To this end, let us define the Fβ-loss

matrix LFβ ∈ R{0,1}s×{0,1}s
+ as follows:

ℓ
Fβ

y,ŷ = 1− Fβ(y, ŷ) .

LFβ has low rank. We show here that (a slightly shifted version of) the above loss matrix has

rank at most s2 + 1.

Proposition 2.2. rank(LFβ − 1) ≤ s2 + 1.

Proof. We have,

ℓ
Fβ

y,ŷ − 1 = −Fβ(y, ŷ) = −
(1 + β2)

∑s
j=1 yj ŷj

β2∥y∥1 + ∥ŷ∥1
.

Stratifying over the s+ 1 different values of ∥y∥1 ∈ {0, 1 . . . , s}, we can write this as

ℓ
Fβ

y,ŷ − 1 = −1(∥y∥1 = 0) · 1(∥ŷ∥1 = 0)

−
s∑

k=1

1(∥y∥1 = k) ·
(1 + β2)

∑s
j=1 yj ŷj

β2k + ∥ŷ∥1

= ay,0 · bŷ,0 +
s∑
j=1

s∑
k=1

ay,jk · bŷ,jk ,
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where

ay,0 = 1(∥y∥1 = 0) (2.2)

bŷ,0 = −1(∥ŷ∥1 = 0) (2.3)

ay,jk = 1(∥y∥1 = k) · yj (2.4)

bŷ,jk = −(1 + β2) · ŷj
β2k + ∥ŷ∥1

. (2.5)

This proves the claim.

LFβ -calibrated surrogates. Given the above result, we can now apply Theorem 2.1 to construct

a family of (s2 + 1)-dimensional convex calibrated surrogate losses for LFβ .3 Specifically, starting

with any strictly proper composite binary loss ϕ : {±1} × R→R+ with underlying link function

γ : [0, 1]→R, we define a multiclass surrogate ψ : {0, 1}s × Rs2+1→R+ and mapping decode :

Rs2+1→{0, 1}s as follows (where we denote u =
(
u0, (ujk)

s
j,k=1

)⊤ ∈ Rs2+1):

ψ(y,u)

= ay,0 · ϕ(+1, u0) + (1− ay,0) · ϕ(−1, u0)

+
s∑
j=1

s∑
k=1

ay,jk · ϕ(+1, ujk) + (1− ay,jk) · ϕ(−1, ujk) (2.6)

decode(u)

∈ argmin
ŷ∈{0,1}s

bŷ,0 · γ−1(u0) +
s∑
j=1

s∑
k=1

bŷ,jk · γ−1(ujk) , (2.7)

where ay,0, ay,jk, bŷ,0, bŷ,jk are as defined in Eqs. (2.2-2.5). Then, by Theorem 2.1 and the proof of

Proposition 2.2, it follows that (ψ, decode) is LFβ -calibrated.4 Therefore, the resulting (ψ, decode)-

based surrogate risk minimization algorithm, when implemented in a universal function class (with

suitable regularization), is consistent for the Fβ-measure. The algorithm is summarized in Algo-

rithm 2.1. Note that since ay,0, ay,jk ∈ {0, 1}, in this case minimizing the surrogate risk above
3Note that minimizing the LFβ -generalization error is equivalent to minimizing the (LFβ −1)-generalization error,

and therefore a calibrated surrogate for LFβ − 1 is also calibrated for LFβ .
4Note that when applying Theorem 2.1 here, we have amin = 0 and amax = 1, and therefore ãy = ay, b̃ŷ = bŷ,

and cŷ = 0.
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Algorithm 2.1 Surrogate risk minimization algorithm for multi-label Fβ-measure

1: Input: Training sample S = ((x1,y1), . . . , (xm,ym)) ∈ (X × {0, 1}s)m
2: Parameters: (1) Strictly proper composite binary CPE loss ϕ : {±1} × R→R+; (2) Class F

of functions f : X→Rs2+1

3: Find fS ∈ argminf∈F
∑m

i=1 ψ(yi, f(xi)), where ψ is as defined in Eq. (2.6)
4: Output: Multi-label classifier hS = decode ◦ fS , where decode is as defined in Eq. (2.7) (see

Appendix for efficient implementation of decode)

amounts to solving s2 + 1 binary CPE problems with standard binary (non-probabilistic) labels.

Choice of strictly proper composite binary loss ϕ. As a specific instantiation, in our experi-

ments, we will make use of the binary logistic loss ϕlog : {±1} × R→R+ given by

ϕlog(y, u) = ln(1 + e−yu) (2.8)

as the binary loss above; this is known to be strictly proper composite (Reid and Williamson, 2010),

with underlying logit link function γlog : [0, 1]→R given by

γlog(p) = ln
( p

1− p

)
. (2.9)

Implementation of ‘decode’ mapping. The mapping decode : Rs2+1→{0, 1}s above can be

implemented in O(s3) time using a procedure due to Dembczynski et al. (2011); details are provided

in the Appendix for completeness. In particular, Dembczynski et al. (2011) show that if one knows

the true conditional MLC distribution p(y|x), then one can use s2 +1 statistics of this distribution

to construct a Bayes optimal classifier for the Fβ-measure; they then provide a procedure to perform

this computation in O(s3) time. As we discuss in greater detail in Section 2.6, our surrogate loss

ψ can be viewed as computing estimates of the same s2 + 1 statistics from the training sample S,

and therefore our algorithm, which applies the ‘decoding’ procedure of Dembczynski et al. (2011)

to these estimated quantities, can be viewed as effectively learning a form of ‘plug-in’ multi-label

classifier for the Fβ-measure.
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2.5. Regret Transfer Bound

Above, we constructed a family of LFβ -calibrated surrogate-mapping pairs (ψ, decode) (Eqs. (2.6-

2.7)), yielding a family of surrogate risk minimization algorithms for the Fβ-measure (Algorithm 2.1).

We now give a quantitative regret transfer bound showing that any guarantees on the surrogate

ψ-regret also translate to guarantees on the target Fβ-regret. Specifically, the surrogate loss ψ was

defined in terms of a constituent strictly proper composite binary loss ϕ : {±1}×R→R+. We show

that if the binary loss ϕ is strongly proper composite (a relatively mild condition satisfied by several

common strictly proper composite binary losses, including the logistic loss), then for all models

f : X→Rs2+1, we can upper bound regretFβ

D [decode ◦ f ], the target Fβ-regret of the multi-label

classifier given by h(x) = decode(f(x)), in terms of regretψD[f ], the surrogate regret of f . In order

to prove the regret transfer bound, we will need the following definition:

Definition 2.2 (Strongly proper composite binary losses (Agarwal, 2014)). Let λ > 0. A binary

loss ϕ : {±1} × R→R+ is said to be λ-strongly proper composite with underlying (invertible) link

function γ : [0, 1]→R if for all q ∈ [0, 1], u ∈ R:

Ey∼Bin±1(q)

[
ϕ(y, u)− ϕ(y, γ(q))

]
≥ λ

2

(
γ−1(u)− q

)2
.

We note that the logistic loss (Eq. (2.8)) is known to be 4-strongly proper composite with underlying

link given by the logit link (Eq. (2.9)) (Agarwal, 2014).

Additional notation. To prove our regret transfer bound, we will also need some additional
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notation. In particular, for each y, ŷ ∈ {0, 1}s, we will define the vectors

ay =



ay,0

ay,11
...

ay,ss


∈ {0, 1}s2+1 (2.10)

bŷ =



bŷ,0

bŷ,11
...

bŷ,ss


∈ Rs

2+1 , (2.11)

where ay,0, ay,jk, bŷ,0, bŷ,jk are as defined in Eqs. (2.2-2.5). Moreover, for each x ∈ X , we will define

q(x) = Ey|x[ay] =
∑

y∈{0,1}s
p(y|x) · ay ∈ [0, 1]s

2+1 . (2.12)

Intuitively, the elements q0(x), (qjk(x))sj,k=1 of q(x) are the ‘class probability functions’ correspond-

ing to the s2+1 binary CPE problems effectively created by the surrogate loss ψ defined in Eq. (2.6).

The function fS : X→Rs2+1 learned by minimizing ψ will be such that γ−1(fS(x)) will serve as an

estimate of q(x).

Regret transfer bound. We are now ready to state and prove the following regret transfer bound

for the family of surrogate losses defined in the previous section:

Theorem 2.3. Let ϕ : {±1}×R→R+ be a λ-strongly proper composite binary loss with underlying

link function γ : [0, 1]→R. Let (ψ, decode) be defined as in Eqs. (2.6-2.7). Then for all probability

distributions D on X × {0, 1}s and all f : X→Rs2+1, we have

regretFβ

D [decode ◦ f ] ≤ 1 + β2

β

√
2(ln s+ 1)

λ
· regretψD[f ] .
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Proof. We have,

regretFβ

D [decode ◦ f ]

=Ex

[∑
y

p(y|x) ·
(
ℓ
Fβ

y,decode(f(x)) −min
ŷ
ℓ
Fβ

y,ŷ

)]
=Ex

[∑
y

p(y|x) ·
(
a⊤ybdecode(f(x)) −min

ŷ
a⊤ybŷ

)]
=Ex

[
q(x)⊤bdecode(f(x)) −min

ŷ
q(x)⊤bŷ

]
=Ex

[
max
ŷ

q(x)⊤
(
bdecode(f(x)) − bŷ

)]
≤Ex

[
max
ŷ

(
q(x)− γ−1(f(x))

)⊤(
bdecode(f(x)) − bŷ

)]
(since by the definition of decode,

−γ−1(f(x))⊤
(
bdecode(f(x)) − bŷ

)
≥ 0 ∀ ŷ)

≤Ex

[∥∥q(x)− γ−1(f(x))
∥∥
2
·max

ŷ

∥∥bdecode(f(x)) − bŷ

∥∥
2

]
(by the Cauchy-Schwarz inequality)

≤ 2max
ŷ

∥∥bŷ

∥∥
2
·Ex

[∥∥q(x)− γ−1(f(x))
∥∥
2

]
. (2.13)

Now, since ϕ is λ-strongly proper composite with link function γ, we have

Ex

[∥∥q(x)− γ−1(f(x))
∥∥2
2

]
=Ex

[(
q0(x)− γ−1(f0(x))

)2
+

s∑
j=1

s∑
k=1

(
qjk(x)− γ−1(fjk(x))

)2]
≤ 2

λ
Ex

[
Ey∼Bin±1(q0(x))

[
ϕ(y, f0(x))− ϕ(y, γ(q0(x))

]
+

s∑
j=1

s∑
k=1

Ey∼Bin±1(qjk(x))

[
ϕ(y, fjk(x))− ϕ(y, γ(qjk(x))

]]
(by λ-strong proper compositeness of ϕ)

=
2

λ
Ex

[
Ey|x

[
ψ(y, f(x))− inf

u∈Rs2+1
ψ(y,u)

]]
=

2

λ
regretψD[f ] . (2.14)

30



Moreover, we have

∥b0∥ = 1 ,

and for ŷ ̸= 0, we have

∥bŷ∥22 = (1 + β2)2
s∑

k=1

gk(∥ŷ∥1) ,

where

gk(t) =
t

(β2k + t)2
.

It can be verified that gk(t) is maximized at t∗ = β2k, yielding for each ŷ ̸= 0,

∥bŷ∥22 ≤ (1 + β2)2
s∑

k=1

gk(β
2k)

= (1 + β2)2
s∑

k=1

1

4β2k

≤ (1 + β2)2

4β2
(ln s+ 1)

(since
∑s

k=1
1
k ≤ ln s+ 1) .

This gives

max
ŷ
∥bŷ∥2 ≤ (1 + β2)

2β

√
ln s+ 1 . (2.15)

Combining Eqs. (2.13-2.15) and applying Jensen’s inequality (to the convex function g(z) = z2)

proves the claim.

Remark. We note that Theorem 2.3 gives a self-contained proof that the surrogate-mapping pair

(ψ, decode) defined in Eqs. (2.6-2.7) is LFβ -calibrated, since the result implies that for any sequence

of models fS learned from training samples S ∼ Dm of increasing size m,

regretψD[fS ]
P−→0 =⇒ regretFβ

D [decode ◦ fS ]
P−→0 .
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Nevertheless, since the design of our surrogate-mapping pair (ψ, decode) was based on the work

of Ramaswamy et al. (2014), we chose to present their calibration result (Theorem 2.1) first. We

also note that, while we have stated the above regret transfer bound for the Fβ-measure, a similar

bound also applies more generally to all multiclass problems with low-rank matrices as considered in

Theorem 2.1, thus yielding a stronger (quantitative) result than Theorem 2.1 (Ramaswamy, 2015).

2.6. Relationship with Plug-in Algorithm of Dembczynski et al. (2013)

The plug-in algorithm of Dembczynski et al. (2013), termed exact F -measure plug-in (EFP), esti-

mates the following statistics of the conditional label distribution p(y|x):

P(∥y∥1 = 0 |x)

P(∥y∥1 = k, yj = 1 |x) , P(yj = 0 |x) , j, k ∈ [s] .

It formulates estimation of the first statistic above as a binary CPE problem (solved via binary

logistic regression), and estimation of the remaining statistics as s multiclass CPE problems (one

for each j ∈ [s]), each with s + 1 classes (solved via multiclass logistic regression). In practice,

since the label vectors y are typically sparse (only a small subset of the s labels are active in any

instance), the effective number of classes for each of the s problems is much smaller than s+1, and

Dembczynski et al. (2013) exploit this fact by considering the statistics P(∥y∥1 = k, yj = 1 |x) only

for small k (based on the maximum number of active labels in the training instances).

As the proof of Theorem 2.3 makes clear, our algorithm can be viewed as estimating the vector

q(x) ∈ [0, 1]s
2+1, with estimation of each component formulated as a binary CPE problem; in

particular, having learned a score vector fS : X→Rs2+1, our algorithm yields γ−1(fS(x)) ∈ [0, 1]s
2+1

as an estimate for q(x). A closer look reveals that q(x) captures essentially the same s2+1 statistics
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as above:5

q0(x) =Ey|x[ay,0] = P(∥y∥1 = 0 |x)

qjk(x) =Ey|x[ay,jk] = P(∥y∥1 = k, yj = 1 |x) , j, k ∈ [s] .

Thus, both algorithms effectively estimate the same statistics of the conditional label distribution

p(y|x); indeed, these are precisely the statistics needed to compute a Bayes optimal multi-label

classifier for the Fβ-measure (Dembczynski et al., 2011). In practice, as with the EFP algorithm,

our algorithm can also be implemented to estimate qjk(x) only for small values of k (i.e. values of

k for which labelings y with ∥y∥1 = k are actually seen in the training data).

2.7. Experiments

We conducted two sets of experiments to evaluate our algorithm. In the first experiment, we

generated synthetic data from a known distribution for which the Bayes optimal F1-accuracy could

be estimated, and tested the convergence of our algorithm to this optimal F1 performance. In the

second set of experiments, we compared the performance of our algorithm to that of other algorithms

on various benchmark data sets. We summarize both sets of experiments below.

2.7.1. Synthetic Data: Convergence to Bayes Optimal F1

In the first experiment, we tested the consistency behavior of our algorithm on a synthetic data

set from a known distribution for which the Bayes optimal F1 performance could be estimated.

Specifically, we generated a multi-label data set with instances x in X = R100 and s = 6 labels/tags

(i.e., labelings y in {0, 1}6), such that the vector q(x) ∈ [0, 1]37 containing the s2+1 = 37 statistics

of the conditional label distribution p(y|x) needed to compute a Bayes optimal multi-label classifier

for F1 (see Eq. (2.12)) could be obtained from a linear function of x. More precisely, we fixed a

matrix W ∈ [0, 1]37×100 with entries drawn uniformly at random from [0, 1]; we checked that W

has full row rank. We also fixed a vector α ∈ [0.1, 1]64 with entries drawn uniformly from [0.1, 1].

To generate a data point (x,y), we then did the following: we first sampled p ∈ ∆64 ≡ ∆{0,1}6

5Note that for each j ∈ [s], the s+ 1 probabilities P(∥y∥1 = k, yj = 1 |x) (k ∈ [s]) and P(yj = 0 |x) estimated by
the j-th multiclass problem in EFP add up to 1, so the EFP algorithm effectively estimates a total of s2+1 statistics.
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Figure 2.2: Convergence of our algorithm to Bayes optimal F1 performance on synthetic multi-label
data (see Section 2.7.1).

from Dirichlet(α). We set q = Ey∼p[ay] ∈ [0, 1]37, where ay ∈ {0, 1}37 is as defined in Eq. (2.10).

We then took x = W†γlog(q), and drew y ∼ p (here W† denotes the pseudo-inverse of W). It can

be verified that this gives q(x) = q = γ−1
log(Wx), and therefore, taking the function class F in our

algorithm to be the class of linear functions (i.e., functions of the form x 7→ Vx for V ∈ R37×100)

suffices to learn a Bayes optimal multi-label classifier.

With the above settings, we used our algorithm (with logistic binary loss ϕlog and linear function

class) to learn a multi-label classifier from increasingly large training samples drawn according to the

above distribution, and measured the F1 performance on a large test set of 15, 000 data points drawn

from the same distribution. The results are shown in Figure 2.2. As can be seen, our algorithm

indeed converges to a Bayes optimal classifier for F1.
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2.7.2. Real Data: Comparison with Other Algorithms

In the second set of experiments, we evaluated the performance of our algorithm on various bench-

mark multi-label data sets drawn from the Mulan repository.6 Details of the data sets are provided

in Table 2.1. All the data sets come with prescribed train/test splits. After training our models on

the training set, we measure the instance-averaged F1 performance on the test set (i.e., we compute

the multi-label F1-measure on each test example and take the average).

We compared with the following algorithms: EFP (Dembczynski et al., 2013), LIMO (label-wise

version recommended for instance-averaged F1) (Wu and Zhou, 2017), and BR (which treats the

s labels as conditionally independent and trains s binary logistic regression classifiers, one for

each label). All algorithms were trained to learn linear models. Regularization parameters (for

regularized logistic regression in our algorithm, EFP, and BR; and for the margin-based objective

in LIMO) were chosen by 5-fold cross-validation on the training set from {10−4, . . . , 103} (for all

algorithms, the parameter value maximizing average F1-measure across the 5 folds was selected).

For our algorithm and EFP, as discussed in Section 2.6, we generally implemented the algorithms

to estimate only a small subset of the s2+1 statistics in q(x) (only those corresponding to numbers

of active labels seen in the training data); for the Birds data set, this resulted in poor performance

for both algorithms, and so for this data set we trained both algorithms to perform a full estimation

of all s2 + 1 statistics.

The results are shown in Table 2.2 (the asterisks in the results for the Birds data set denote

the full estimation of s2 + 1 statistics for this data set, as discussed above). As expected, the

performance of our algorithm is similar to that of EFP. BR, as expected, is generally a relatively

weak baseline. LIMO is sometimes competitive, but since it aims to simultaneously optimize several

multi-label performance measures, we do not expect it to outperform algorithms designed for a

specific performance measure, and indeed this is borne out in our experiments.
6http://mulan.sourceforge.net/datasets-mlc.html
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Table 2.1: Multi-label data sets used in experiments in Section 2.7.2.

Data set # train # test # labels # features
Scene 1211 1196 6 294
Yeast 1500 917 14 103
Birds 322 323 19 260
Medical 333 645 45 1449
Enron 1123 579 53 1001
Mediamill 30993 12914 101 120

Table 2.2: Comparison of F1 performance of our algorithm with other MLC algorithms on various
Mulan multi-label data sets. Higher values are better. See Section 2.7.2 for details and for an
explanation of the asterisks for the Birds data set.

Data set Our algorithm EFP LIMO BR
Scene 0.7445 0.7426 0.6325 0.6009
Yeast 0.6571 0.6558 0.4914 0.6065
Birds *0.5836 *0.5293 0.5463 0.5510
Medical 0.7557 0.7685 0.7237 0.6507
Enron 0.5868 0.6204 0.5764 0.5455
Mediamill 0.5642 0.5600 0.5135 0.5229

2.8. Conclusion

We have provided a family of convex calibrated surrogate losses for the multi-label Fβ-measure,

together with a quantitative regret transfer bound. Our surrogates effectively decompose the Fβ

learning problem over s labels into (at most) s2 + 1 binary class probability estimation (CPE)

problems. The regret transfer bound allows us to transfer any regret guarantees on the binary

CPE learners to regret guarantees on the overall Fβ learner. Although motivated from a different

viewpoint, like the EFP algorithm of Dembczynski et al. (2013), our algorithm can also be viewed

as a type of ‘plug-in’ algorithm for the Fβ-measure. While we have described the algorithm in the

context of multi-label classification, the algorithm can also be used for binary sequence labeling

tasks where the Fβ-measure is useful.
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CHAPTER 3

COMPLEX LABEL SPACE: MULTI-LABEL LEARNING FOR MULTIPLE

PERFORMANCE MEASURES WITHOUT RE-TRAINING

Complex Label Space
Complex Learning
Setting

Complex Performance Measure

⋆ This work

Figure 3.1: Position of Multi-Label Learning for Multiple Performance Measures without Re-training
in the thesis.

In this chapter, we continue our discussion of multi-label classification problems. We show how to

design consistent algorithms to optimize for several widely used multi-label performance measures

simultaneously (i.e., without re-training).

3.1. Introduction

3.1.1. Background and Our Contributions

In contrast to binary or multiclass classification, where 0-1loss is the standard performance mea-

sure, there is no such canonical performance measure for multi-label classification. Owing to the

complexity of multi-label classification, various performance measures have been proposed to assess

multi-label classifiers. These include Hamming loss, subset 0-1loss (subset accuracy), precision,
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recall, and F1-measure (Dembczynski et al., 2010b; Wu and Zhou, 2017; Menon et al., 2019).

It has been observed that different algorithms tend to perform variably across different perfor-

mance measures. There has been progress in understanding the reasons behind these performance

variations, identifying which algorithms excel under specific performance measures, and finding

connections between different performance measures. This knowledge can be beneficial for multiple

reasons:

Algorithm selection: By understanding the strengths and weaknesses of various algorithms with

respect to different performance measures, practitioners can make more informed decisions when

selecting an algorithm for a particular task, ultimately leading to better performance.

Algorithm optimization: Gaining insight into why certain algorithms perform well under spe-

cific performance measures can help researchers develop new methods or improve existing ones to

optimize performance for different measures.

Theoretical advancements: Investigating the performance of algorithms across different perfor-

mance measures contributes to the theoretical understanding of multi-label classification, paving

the way for further developments in the field and inspiring novel approaches.

Performance benchmarking: A comprehensive understanding of algorithm performance with

respect to various measures facilitates the establishment of benchmarking standards, enabling fair

and meaningful comparisons between different algorithms.

In particular, Dembczynski et al. (2010b) showed that Hamming loss and subset 0-1loss could not

be optimized at the same time. They performed a regret analysis showing quantitatively that a

multi-label classifier intended to minimize the subset 0-1loss can become very poor in terms of

Hamming loss, and vice versa. Wu and Zhou (2017) proposed a unified margin view to study eleven

performance measures in multi-label classification. They defined label-wise margin and instance-

wise margin, and showed that one can optimize different performance measures by maximizing

label-wise margin or instance-wise margin. Menon et al. (2019) studied several multi-label learn-
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ing algorithms from the perspective of reduction: how they reduce to some binary or multiclass

problems. They focused on precision@k and recall@k performance measures, and studied five com-

monly used reductions. They explicated the underlying risks for these reductions, and showed they

are either consistent with respect to either precision or recall. Furthermore, they showed that in

general no reduction can be optimal for both precision and recall. Wu et al. (2018) made a counter-

intuitive observation that when the label space was small, algorithms aiming to optimize Hamming

loss often had better performance on the subset 0-1loss than the algorithms that optimize subset

0-1loss directly. This is inconsistent with Dembczynski et al. (2010b). As an attempt to fill this gap,

Wu and Zhu (2020) analyzed the generalization bounds for the algorithms on various performance

measures including Hamming loss, subset 0-1loss and ranking loss.

Still, there is a lack of principled understanding of whether it is possible to design a multi-label

learning algorithm such that when given a pre-specified set of performance measures and a suffi-

ciently large training sample, it can output a multi-label classifier whose performance converges to

the corresponding Bayes optimal performance as the training size increases, for each of the per-

formance measures in the set (with some tweaks to the learned classifier, but re-training is not

allowed).

In this work, we study this problem by utilizing the theory of convex calibrated surrogates. We first

show that it is possible to design one convex calibrated surrogate with respect to several performance

measures so that one can train using the surrogate once and then apply different post-processing

functions to optimize different performance measures. Then we show how to optimize Hamming loss,

precision, recall and Top@k using a learned scoring function for Fβ-measure. Finally, we provide a

regret transfer bound for our method to show it is Bayes consistent.

Methodology. We study the problem by utilizing the theory of convex calibrated surrogates. Con-

vex calibrated surrogates are a class of surrogate loss functions used in machine learning, particularly

in classification problems. They are designed to approximate the target performance measures (typ-

ically discrete losses) while retaining desirable properties such as convexity and calibration. The

notion of calibration ensures that minimizing the surrogate loss can (in the limit of a sufficiently
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large training sample) recover a Bayes optimal model for the target discrete loss. The purpose of

using convex calibrated surrogate loss functions is to make the optimization problem more tractable

and efficient while recovering a Bayes optimal model for the target performance measure. In re-

cent years, the development of convex calibrated surrogates has expanded to address more intricate

learning problems. In particular, we build solutions to the problem based on the following works.

• Ramaswamy and Agarwal (2012, 2016) introduced the notion of convex calibration dimension

of a multiclass loss L that measures the smallest ‘size’ of the surrogate prediction space in

which there exists a convex calibrated surrogate with respect to L. Since in principle, multi-

label classification problems can be treated as multiclass classification problems with huge

label spaces, we can use these works to study upper bounds on the dimension of the surrogate

prediction space in which it is possible to design convex calibrated surrogate with respect to

several performance measures.

• Ramaswamy et al. (2014) studied consistency properties of output coding based methods for

multiclass learning problems with a general loss matrix L. In our previous work (Zhang et al.,

2020), we have utilized the results of Ramaswamy et al. (2014) to design output coding based

algorithms that are consistent with respect to Fβ-measure. We can also use this work to study

the commonality between output coding based methods for various multi-label performance

measures.

• Papers that have studied and proposed consistent algorithms for commonly used multi-

label performance measures are also helpful (Zhang and Zhou, 2014; Ramaswamy et al.,

2013; Wydmuch et al., 2018; Menon et al., 2019; Dembczynski et al., 2013; Zhang et al., 2020;

Yang and Koyejo, 2020).

3.1.2. Notation

For an integer n, we denote by [n] the set of integers {1, . . . , n}, and by ∆n the probability simplex

{p ∈ Rn+ :
∑n

y=1 py = 1}. For a vector a, we denote by ∥a∥p the Lp norm of a, and by aj the

j-indexed entry of a. For a matrix A, we denote by ∥A∥p the induced p-norm of A, and by ay the
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y-indexed column vector of A. (ay)j is the j-indexed entry of ay. Indicator function is 1(·).

3.1.3. Related Work

There has been much work on multi-label learning and convex calibrated surrogates. Below we

briefly discuss work that is most related to our study. For detailed surveys on multi-label learning,

we refer the reader to Zhang and Zhou (2014) and Pillai et al. (2017).

Bayes optimal multi-label classifiers and consistent algorithms. When one wants to design

a good algorithm for a target performance measure ℓ in MLC, the standard goal will be to design

(Bayes) consistent algorithms for ℓ, i.e., algorithms whose ℓ-regret converges (in probability) to

zero as the number of training examples increases. For example, binary relevance is known to yield

a consistent algorithm for Hamming loss (Zhang and Zhou, 2014). Ramaswamy et al. (2013) pro-

posed convex calibrated surrogates for the precision measure. Wydmuch et al. (2018) also studied

consistent algorithms for the precision measure. Menon et al. (2019) studied Bayes optimal pre-

dictions for the recall measure. Dembczynski et al. (2013); Zhang et al. (2020) proposed consistent

algorithms for Fβ-measure. Yang and Koyejo (2020) studied consistent algorithms for the Top@k

accuracy.

Convex calibrated surrogates. Convex surrogate losses are frequently used in machine learn-

ing to design computationally efficient learning algorithms. The notion of calibrated surrogate

losses, which ensures that minimizing the surrogate loss can (in the limit of sufficient data) re-

cover a Bayes optimal model for the target discrete loss, was initially studied in the context of

binary classification (Bartlett et al., 2006; Zhang, 2004a) and multiclass 0-1 classification (Zhang,

2004b; Tewari and Bartlett, 2007). In recent years, calibrated surrogates have been designed for

several more complex learning problems, including general multiclass problems and certain types of

subset ranking and multi-label problems (Steinwart, 2007; Duchi et al., 2010; Gao and Zhou, 2013;

Ramaswamy et al., 2013, 2014, 2015).
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3.1.4. Organization

Section 3.2 gives preliminaries and background. Section 3.3 gives a tighter upper bound for convex

calibration dimension for multiple loss matrices. Section 3.4 shows how to optimize Hamming loss,

precision, recall and Top@k using a learned scoring function for Fβ-measure. Section 3.5 provides

a regret transfer bound for our method to show it is Bayes consistent. Section 3.6 concludes this

work.

3.2. Preliminaries and Background

3.2.1. Preliminaries

In an MLC problem, there is an instance space X , and a set of s labels or tags L = [s] := {1, . . . , s}

that can be associated with each instance in X . For example, in image tagging, X is the set of

possible images, and L is a set of s pre-defined tags (such as sky, cloud, water etc.) that can be

associated with each image. The label space Y is {0, 1}s. The learner is given a training sample

S = ((x1,y1), . . . , (xm,ym)) ∈ (X × Y)m, where the labeling yi ∈ {0, 1}s indicates which of the s

tags are active in instance xi (specifically, yij = 1 denotes that tag j is active in instance xi, and

yij = 0 denotes it is inactive). The goal is to learn from these examples a multi-label classifier

h : X→{0, 1}s which, given a new instance x ∈ X , predicts which tags are active or inactive via

h(x) ∈ {0, 1}s. The learned multi-label classifier h is evaluated by some performance measures.

Below we give definitions of some commonly used performance measures in MLC.

Hamming loss. Given a true labeling y ∈ {0, 1}s and a predicted labeling ŷ ∈ {0, 1}s, Hamming

loss Ham : Y × Y → R+ is defined as

Ham(y, ŷ) =
1

s

s∑
j=1

1(yj ̸= ŷj) . (3.1)

Clearly, 0 ≤ Ham(y, ŷ) ≤ 1. Lower values of Hamming loss correspond to better quality predictions.

Hamming loss measures the fraction of the number of incorrectly predicted tags to the total number

of tags.
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Precision (gain). Given a true labeling y ∈ {0, 1}s and a predicted labeling ŷ ∈ {0, 1}s, precision

Prec : Y × Y → R+ is defined as

Prec(y, ŷ) =

∑s
j=1 yj ŷj

∥ŷ∥1
. (3.2)

Clearly, 0 ≤ Prec(y, ŷ) ≤ 1. Higher precision values correspond to better predictions. Precision

measures the fraction of true active tags among predicted active tags.

Recall (gain). Given a true labeling y ∈ {0, 1}s and a predicted labeling ŷ ∈ {0, 1}s, recall

Rec : Y × Y → R+ is defined as

Rec(y, ŷ) =

∑s
j=1 yj ŷj

∥y∥1
. (3.3)

Clearly, 0 ≤ Rec(y, ŷ) ≤ 1. Higher recall values correspond to better predictions. We take 0
0 = 1,

so that when y = ŷ = 0, we have Rec(0,0) = 1. Recall measures the fraction of predicted active

tags among true active tags.

Fβ-measure (gain). Fβ-measure balances precision and recall by taking their (weighted) harmonic

mean. Specifically, given a true labeling y ∈ {0, 1}s and a predicted labeling ŷ ∈ {0, 1}s, Fβ-measure

Fβ : Y × Y → R+ is defined as

Fβ(y, ŷ) =

(( β2

1 + β2

) 1

Rec(y, ŷ)
+
( 1

1 + β2

) 1

Prec(y, ŷ)

)−1

=
(1 + β2)

∑s
j=1 yj ŷj

β2∥y∥1 + ∥ŷ∥1
. (3.4)

Clearly, 0 ≤ Fβ(y, ŷ) ≤ 1. Higher values of the Fβ-measure correspond to better quality predictions.

We take 0
0 = 1, so that when y = ŷ = 0, we have Fβ(0,0) = 1. The most commonly used

instantiation is the F1-measure, which weighs recall and precision equally; other commonly used

variants include the F2-measure, which weighs recall more heavily than precision, and the F0.5-

measure, which weighs precision more heavily than recall.
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Top@k accuracy. Given a true labeling y ∈ {0, 1}s with ∥y∥1 = 1 and a predicted labeling

ŷ ∈ {0, 1}s, Top@k accuracy Top@k : Y × Y → R+ is defined as

Top@k(y, ŷ) = 1(∥ŷ∥1 = k) ·
s∑
j=1

yj ŷj . (3.5)

Clearly, Top@k(y, ŷ) ∈ {0, 1}. Top@k accuracy is often used to evaluate performance for challenging

classification tasks such as computer vision because it can compensate for ambiguity in true labels. It

allows the classifier to predict k active tags, and treat the prediction as correct if the predicted active

tags include the true active tag. This performance measure has been studied in Yang and Koyejo

(2020).

Generalization error and regret. Assume that training examples are drawn i.i.d. from some

underlying probability distribution D on X ×Y, and consider the performance measure ℓ : Y×Y →

R+ (here, we assume ℓ is a loss; when the performance measure is a gain, one can simply negate it).

Then it is natural to measure the quality of a multi-label classifier h : X→Y by its ℓ-generalization

error :

erℓD[h] = E(x,y)∼D[ℓ(y,h(x))] . (3.6)

The Bayes optimal ℓ-error is then the lowest possible value of the ℓ-generalization error for D:

erℓ,∗D = inf
h:X→Y

erℓD[h] . (3.7)

The ℓ-regret of a multi-label classifier h is then the difference between the ℓ-generalization error of

h and the Bayes ℓ-error:

regretℓD[h] = erℓD[h]− erℓ,∗D . (3.8)

Consistency. If a learning algorithmA, when given a training sample S = ((x1,y1), . . . , (xm,ym)) ∈
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(X × Y)m of size m, outputs a multi-label classifier hS = A(S) with the following properties:

regretℓD[hS ]
P−→0 as m→∞ , (3.9)

then algorithm A is Bayes consistent for the given target loss ℓ.

3.2.2. Learning Goal

Instead of proposing different consistent algorithms for different performance measures, we want to

understand whether one can design a multi-label learning algorithm capable of generating classifiers,

such that when given a predetermined set of performance measures and an adequately large training

set, the learned classifier’s performance converges to the respective Bayes optimal performance as

the training size increases, for each performance measure in the set (some post-processing to the

learned classifier are allowed; however, re-training is not allowed).

Specifically, let P = {ℓ1, ..., ℓl} be a set of l performance measures in MLC. Assume the underlying

distribution on X × Y is D. We want to design a learning algorithm A such that when given

a training sample S = ((x1,y1), . . . , (xm,ym)) ∈ (X × Y)m of size m, the algorithm outputs a

multi-label classifier hS = A(S) with the following properties:

∀i = 1, 2, ..., l, regretℓiD[h
(i)
S ]

P−→0 as m→∞ , (3.10)

where h
(i)
S is obtained by applying post-processing to hS (no training involved at this step).

Remark. In multiclass classification, one can do this for a set of cost-sensitive performance measures

(including the commonly used 0-1loss). Indeed, for an n-class classification problem, one can simply

learn an estimator η̂ for the class probability function: η : X → ∆n where

ηi(x) = P(Y = i|x) . (3.11)

Then for any cost-sensitive loss L ∈ Rn×n+ , it is well-known that an accurate estimator of η can

produce a Bayes optimal classifier for L (for an instance x, choose a prediction that minimizes the
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expected loss under L). Although, in principle, MLC can be viewed as a multiclass problem, the

challenge is that the label space is too large (for MLC with s tags, the label space can be as large

as {0, 1}s). Therefore, we need to design algorithms that are efficient for MLC problems.

3.2.3. Convex Calibrated Surrogates and Convex Calibration Dimension

Since the label space Y is fixed in MLC problems (or more generally, in multiclass classification

problems), we can represent an MLC performance measure ℓ via a loss matrix L, with entries ℓy,ŷ

indicating the loss incurred on predicting ŷ when the clean label is y:

ℓy,ŷ = ℓ(y, ŷ) .

Surrogate risk minimization and calibrated surrogates. Since minimizing the discrete loss

L directly is computationally hard, a common algorithmic framework is to minimize a surrogate

loss ψ : Y × Rd→R+ for some suitable d ∈ Z+. In particular, given a multiclass training sample S

as above, one learns a d-dimensional ‘scoring’ function fS : X→Rd by solving

minf
∑m

i=1 ψ(yi, f(xi))

over a suitably rich class of functions f : X→Rd; and then returns hS = decode◦fS for some suitable

mapping decode : Rd→Y. In practice, the surrogate ψ is often chosen to be convex in its second

argument to enable efficient minimization. It is known that if the minimization is performed over

a universal function class (with suitable regularization), then the resulting algorithm is universally

ψ-consistent, i.e., that the ψ-regret converges to zero:

regretψD[fS ] = erψD[fS ]− erψ,∗D
P−→0 as m→∞ ,

where erψD[f ] = E(x,y)∼D[ψ(y, f(x)) ] is the ψ-generalization error of f and erψ,∗D = inff :X→Rd erψD[f ]

is the Bayes ψ-error. The surrogate ψ, together with the mapping decode, is said to be L-calibrated
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if this also implies L-consistency, i.e., if

regretψD[fS ]
P−→0 =⇒ regretLD[decode ◦ fS ]

P−→0 .

Thus, given a target loss L, the task of designing an L-consistent algorithm reduces to designing a

convex L-calibrated surrogate-mapping pair (ψ, decode); the resulting surrogate risk minimization

algorithm (implemented in a universal function class with suitable regularization) is then universally

L-consistent.

Convex calibration dimension. To measure the smallest dimension of a prediction space in

which it is possible to design a convex surrogate that is calibrated with respect to the loss matrix

L, Ramaswamy and Agarwal (2016) introduced the notion of convex calibration dimension (CC

dimension).

Definition 3.1 (Convex calibration dimension; Definition 10 of Ramaswamy and Agarwal (2016)).

CCdim(L) = min{d ∈ Z+ : ∃ convex L-calibrated surrogate (ψ, decode) acting on C ⊆ Rd}

More importantly, they showed that the CC dimension of a loss matrix L is upper bounded by its

rank:

Proposition 3.1 (Corollary 13 of Ramaswamy and Agarwal (2016)).

CCdim(L) ≤ rank(L) .

This means that one could design a convex calibrated surrogate for L with at most d = rank(L)

dimension.

Convex calibration dimension for multiple loss matrices. Now, we want to understand the
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dimension needed to design a convex calibrated surrogate for multiple loss matrices at the same

time. Without loss of generality, suppose there are two loss matrices L(1) and L(2). By Proposition

3.1, we can immediately get the following upper bound:

CCdim(L(1),L(2)) ≤ rank(L(1)) + rank(L(2)) . (3.12)

Intuitively, one could ‘stack’ a convex calibrated surrogate for L(1) and a convex calibrated surrogate

for L(2) together to create a convex calibrated surrogate for L(1) and L(2). Can we do better than

this trivial upper bound? The answer is yes.

Below, we review a result of Ramaswamy et al. (2014), which we will use in the next section to

show how to improve this upper bound.

Output coding (OC) method of Ramaswamy et al. (2014) for low-rank multiclass loss

matrices. Output coding (OC) methods are a popular approach to solving multiclass learning

problems. The idea is to reduce a multiclass classification problem into a set of binary classification

problems via a ‘code matrix’. Such approach includes the widely used one-vs-all and all-pairs

methods (e.g., one-vs-all SVM and one-vs-all logistic regression), and the error-correcting output

coding method of Dietterich and Bakiri (1995). Below, we review the output coding technique of

Ramaswamy et al. (2014) for multiclass problems.

Given a multiclass loss matrix L ∈ Rn×n+ of rank r (which then can be factorized as L = A⊤B+1t⊤

for A,B ∈ Rr×n, t ∈ Rn, (i.e., ℓy,ŷ = a⊤y bŷ + tŷ), where 1 is a vector of all ones), the method

decomposes the multiclass problem into r binary CPE problems by ‘encoding’ labels into vectors in

[0, 1]r using a ‘code matrix’ A′ = [a′y]y∈[n] ∈ [0, 1]r×n, a shifted and scaled version of A (and vice

versa). Then it solves the r binary CPE problems by minimizing a surrogate ψ : [n]×Vr→R+ (here

V ⊆ R is an interval; see Definition 3.2 below), which is built from strongly proper composite binary

losses ϕ with link function γ (see Definition 3.2 below):

ψ(y,u) =

r∑
j=1

(
(a′y)jϕ(1, uj) + (1− (a′y)j)ϕ(0, uj)

)
. (3.13)
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Examples of ϕ include the widely used binary logistic loss and squared loss. It is known that

minimizing such losses allows one to recover accurate class probability estimates for binary CPE

problems (Reid and Williamson, 2010). Essentially, strongly proper composite binary loss ϕ allows

us to learn a scoring function uj(x) for each j such that

γ−1(uj(x)) ≈ Ey∼P(Y |X=x)[(a
′
y)j ] .

Finally, the method applies decode : Vr→Y (by solving a linear optimization problem) to convert

the binary class probability estimates into labels in Y, as follows:

decode(u) ∈ argmin
ŷ∈[n]

r∑
j=1

(amax − amin)(bŷ)jγ
−1(uj) + tŷ + amin

∑r
j=1(bŷ)j . (3.14)

where amax, amin depend on A (these are used to shift and scale A into A′). The OC method is

summarized in Algorithm 3.1.

As shown in Ramaswamy et al. (2014), Algorithm 3.1 is Bayes consistent for L(with a sufficiently

rich function class and suitable regularization).

Definition 3.2 (Strongly proper composite binary losses (Agarwal, 2014)). Let V ⊆ R be an inter-

val. A binary loss ϕ : {0, 1} × V→R+ is λ-strongly proper composite with underlying (invertible)

link function γ : [0, 1]→V if for all q ∈ [0, 1] and u ∈ V:

Ey∼Bernoulli(q)

[
ϕ(y, u)− ϕ(y, γ(q))

]
≥ λ

2

(
γ−1(u)− q

)2
,

where y ∼ Bernoulli(q) denotes a Bernoulli random variable that takes value 1 with probability q

and value 0 with probability 1 − q. One can recover class probability estimates by applying γ−1 to

the learned real-valued scores u (Reid and Williamson, 2010).

3.3. A Tighter Upper Bound for Convex Calibration Dimension for Multiple Loss Matrices

In this section, we will use the result of Ramaswamy et al. (2014) for low-rank loss matrices to show

that the convex calibration dimension for two loss matrices enjoys a tighter upper bound than Eq.
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Algorithm 3.1 Output Coding (OC) Method for Multiclass Classification
1: Inputs:

(1) Training sample, S = ((x1, y1), . . . , (xm, ym)) ∈ (X × [n])m

(2) Target loss L ∈ Rn×n+ factorized as L = A⊤B + 1t⊤ for some A,B ∈ Rr×n, t ∈ Rn, (i.e.,
ℓy,ŷ = a⊤y bŷ + tŷ), where 1 is a vector of all ones

2: Parameters:
(1) Strongly proper composite binary loss ϕ : {0, 1} × V→R+ with link function γ : [0, 1]→V
(2) Class F of functions f : X→Vr

3: Define amin = miny,j(ay)j and amax = maxy,j(ay)j . Define A′ ∈ [0, 1]r×n with entries

(a′y)j =
(ay)j − amin

amax − amin
∈ [0, 1] , where a′y is the y-indexed column vector of A′

4: Define surrogate ψ : [n]× Vr→R+ and decode : Vr→Y as follows:

ψ(y,u) =
r∑
j=1

(
(a′y)jϕ(1, uj) + (1− (a′y)j)ϕ(0, uj)

)
,

decode(u) ∈ argmin
ŷ∈[n]

r∑
j=1

(amax − amin)(bŷ)jγ
−1(uj) + tŷ + amin

∑r
j=1(bŷ)j

5: Compute f̂ ∈ argminf∈F
∑m

i=1 ψ(yi, f(xi)), where ψ is defined above
6: Output:

Multiclass classifier ĥ = decode ◦ f̂ , where decode is defined above

(3.12). Our result can be easily generalized to a general number of loss matrices.

Let L(1) ∈ Rn×n+ of rank r1 be a multiclass loss matrix L(1) = (A(1))⊤B(1) + 1(t(1))⊤, with ℓ
(1)
y,ŷ =

(a
(1)
y )⊤b

(1)
ŷ + t

(1)
ŷ for some a

(1)
1 , . . . ,a

(1)
n ∈ Rr1 , b(1)

1 , . . . ,b
(1)
n ∈ Rr1 and t(1) ∈ Rr1 . Let L(2) ∈ Rn×n+

of rank r2 be a multiclass loss matrix L(2) = (A(2))⊤B(2) + 1(t(2))⊤, with ℓ
(2)
y,ŷ = (a

(2)
y )⊤b

(2)
ŷ + t

(2)
ŷ

for some a
(2)
1 , . . . ,a

(2)
n ∈ Rr2 , b(2)

1 , . . . ,b
(2)
n ∈ Rr2 and t(2) ∈ Rr2 .

Let

A =

A(1)

A(2)


be a matrix by concatenating A(1) and A(2) vertically. Note that A has size (r1 + r2)× n.
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Let r denote the row rank of A (therefore, r is also rank of A). Then there exist A′ ∈ [0, 1]r×n,

S(1) ∈ Rr×r1 , S(2) ∈ Rr×r2 , τ (1) ∈ Rr1 and τ (2) ∈ Rr2 such that

A(1) = (S(1))⊤A′ + τ (1)1⊤n

A(2) = (S(2))⊤A′ + τ (2)1⊤n

where 1n ∈ Rn is a vector of all ones.

Let ϕ : {0, 1} × V→R+ be a strongly proper composite binary loss with link function γ : [0, 1]→V.

Define a surrogate ψ : [n]× Vr→R+ as:

ψ(y,u) =
r∑
j=1

(
(a′y)jϕ(1, uj) + (1− (a′y)j)ϕ(0, uj)

)
. (3.15)

Then, define decode(1) : Vr→Y to optimize for loss L(1) as:

decode(1)(u) ∈ argmin
ŷ∈[n]

〈
(S(1))⊤γ−1(u) + τ (1),b

(1)
ŷ

〉
+ t

(1)
ŷ , (3.16)

where ⟨·, ·⟩ denotes the inner product, and (γ−1(u))j = γ−1(uj).

Similarly, define decode(2) : Vr→Y to optimize for loss L(2) as:

decode(2)(u) ∈ argmin
ŷ∈[n]

〈
(S(2))⊤γ−1(u) + τ (2),b

(2)
ŷ

〉
+ t

(2)
ŷ . (3.17)

By Ramaswamy et al. (2014), (ψ, decode(1)) is L(1)-calibrated, and (ψ, decode(2)) is L(2)-calibrated.

In Section 3.5, we will formally prove the consistency of the proposed approach via a regret transfer

bound.

The proposed approach above can be adapted to show that one can design a convex calibrated
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surrogate for two loss matrices L(1) and L(2) at the same time with dimension equal to the rank of

(L(1))⊤

(L(2))⊤

 ∈ R2n×n
+ .

We summarize this observation in a proposition below.

Proposition 3.2.

CCdim(L(1),L(2)) ≤ rank(L⊤) = rank(L) , L⊤ =

(L(1))⊤

(L(2))⊤

 ∈ R2n×n
+ . (3.18)

Proof. See the discussion above.

Note that

rank(L) ≤ rank(L(1)) + rank(L(2)) .

Therefore, the bound in Eq. (3.18) is tighter than Eq. (3.12).

3.4. Optimizing Multiple Performance Measures in MLC Without Re-training

In this section, we apply the approach proposed in Section 3.3 to show how to optimize multiple per-

formance measures in MLC without re-training. Specifically, we show that once we have optimized

Fβ-measure, we can use the learned scoring function to optimize several other MLC performance

measures by applying different decode functions.

3.4.1. Optimizing Fβ-measure

Factorization of Fβ-measure. Fβ-measure (Eq. (3.4)) is a gain function, so we define the

corresponding loss matrix LFβ as

ℓ
Fβ

y,ŷ = 1− Fβ(y, ŷ) . (3.19)
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Then we have the following factorization:

Proposition 3.3 (Factorization of LFβ ).

ℓ
Fβ

y,ŷ = 1−
(1 + β2)

∑s
j=1 yj ŷj

β2∥y∥1 + ∥ŷ∥1

= 1− 1(∥y∥1 = 0) · 1(∥ŷ∥1 = 0)

−
s∑

k=1

1(∥y∥1 = k)
(1 + β2)

∑s
j=1 yj ŷj

β2k + ∥ŷ∥1

= 1− 1(∥y∥1 = 0) · 1(∥ŷ∥1 = 0)

−
s∑

k=1

s∑
j=1

1(∥y∥1 = k) · yj
(1 + β2)ŷj
β2k + ∥ŷ∥1

= tŷ + (ay)0 · (bŷ)0 +

s∑
j=1

s∑
k=1

(ay)jk · (bŷ)jk , (3.20)

where

tŷ = 1, (3.21)

(ay)0 = 1(∥y∥1 = 0), (3.22)

(bŷ)0 = −1(∥ŷ∥1 = 0) (3.23)

(ay)jk = 1(∥y∥1 = k) · yj , (3.24)

(bŷ)jk = −
(1 + β2) · ŷj
β2k + ∥ŷ∥1

. (3.25)

Then the y-indexed column of AFβ is a vector collecting (ay)0 and (ay)jk, the ŷ-indexed column

of BFβ is a vector collecting (bŷ)0 and (bŷ)jk, and tFβ = 1. This factorization has been shown in

Zhang et al. (2020).

Optimizing Fβ-measure. We can follow the Output Coding method (Algorithm 3.1) to optimize

Fβ-measure (Ramaswamy et al., 2014; Zhang et al., 2020). The scoring function f has dimension
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s2 + 1. The resulting surrogate loss is

ψ(y,u) =(ay)0 · ϕ(1, u0) + (1− (ay)0) · ϕ(0, u0)

+

s∑
j=1

s∑
k=1

(ay)jk · ϕ(1, ujk) + (1− (ay)jk) · ϕ(0, ujk) (3.26)

where (ay)0 is defined in Eq. (3.22) and (ay)jk is defined in Eq. (3.24). The corresponding decode

function is

decode(f(x)) = argmin
ŷ∈Y

tŷ + γ−1(f0(x)) · (bŷ)0 +

s∑
j=1

s∑
k=1

γ−1(fjk(x)) · (bŷ)jk .

Note that

γ−1(f0(x)) ≈ Ey∼P(Y|X=x)[(ay)0] , (3.27)

γ−1(fjk(x)) ≈ Ey∼P(Y|X=x)[(ay)jk] , j, k ∈ [s] . (3.28)

3.4.2. Optimizing Hamming Loss Using Learned Scoring Function for Fβ-measure

Factorization of Hamming loss. Hamming loss (Eq. (3.1)) is a loss function, so we define the

corresponding loss matrix LHam as

ℓHam
y,ŷ = Ham(y, ŷ) . (3.29)

Then we have the following factorization:
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Proposition 3.4 (Factorization of LHam).

ℓHam
y,ŷ =

1

s

s∑
j=1

1(ŷj ̸= yj)

=
1

s

s∑
j=1

(1− 2ŷj)yj +
1

s

s∑
j=1

ŷj

=
1

s

s∑
j=1

(1− 2ŷj)1(yj = 1) +
1

s

s∑
j=1

ŷj . (3.30)

Optimizing Hamming loss using learned scoring function for Fβ-measure. Based on this

factorization, for a given instance x, if we know

Ey∼P(Y|X=x)[1(yj = 1)] , j ∈ [s] ,

then we can choose an optimal prediction for x by choosing ŷ that minimizes Eq. (3.30). The

question reduces to how to get Ey∼P(Y|X=x)[1(yj = 1)] from the learned scoring function f for

Fβ-measure.

Note that

Ey∼P(Y|X=x)[1(yj = 1)] = P(yj = 1|X = x)

=
s∑

k=1

P(∥y∥1 = k, yj = 1|X = x)

=

s∑
k=1

Ey∼P(Y|X=x)[(ay)jk] (by Eq. (3.24))

≈
s∑

k=1

γ−1(fjk(x)) (by Eq. (3.28)) .

So, with the learned scoring function f for Fβ-measure, the decode function to optimize Hamming

loss is

decode(f(x)) = argmin
ŷ∈Y

1

s

s∑
j=1

(1− 2ŷj)
( s∑
k=1

γ−1(fjk(x))
)
+

1

s

s∑
j=1

ŷj . (3.31)
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Remark. Normally, we need an s-dimensional scoring function to optimize Hamming loss (Eq.

(3.30)) and an (s2 + 1)-dimensional scoring function to optimize Fβ-measure (Eq. (3.20)), for a

total of s2 + s+1. With our method, the combined loss matrix of LFβ and LHam has rank no more

than s2 + 1, so we only need an (s2 + 1)-dimensional scoring function to optimize Hamming loss

and Fβ-measure at the same time.

3.4.3. Optimizing Precision Using Learned Scoring Function for Fβ-measure

Factorization of precision. Precision (Eq. (3.2)) is a gain function, so we define the corresponding

loss matrix LPrec as

ℓPrec
y,ŷ = 1− Prec(y, ŷ) . (3.32)

Then we have the following factorization:

Proposition 3.5 (Factorization of LPrec).

ℓPrec
y,ŷ = 1−

∑s
j=1 yj ŷj

∥ŷ∥1

= 1−
s∑
j=1

yj ·
ŷj
∥ŷ∥1

= 1−
s∑
j=1

1(yj = 1) · ŷj
∥ŷ∥1

. (3.33)

Optimizing precision using learned scoring function for Fβ-measure. Based on this fac-

torization, for a given instance x, if we know

Ey∼P(Y|X=x)[1(yj = 1)] , j ∈ [s] ,

then we can choose an optimal prediction for x by choosing ŷ that minimizes Eq. (3.33). The

question reduces to how to get them from the learned scoring function f for Fβ-measure.

We recognize 1(yj = 1), j ∈ [s] are the same factors as in Hamming loss (Eq. (3.30)). So, with the
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learned scoring function f for Fβ-measure, the decode function to optimize precision is

decode(f(x)) = argmin
ŷ∈Y

1−
s∑
j=1

( s∑
k=1

γ−1(fjk(x))
)
· ŷj
∥ŷ∥1

.

Remark. Normally, we need an s-dimensional scoring function to optimize precision (Eq. (3.33))

and an (s2 + 1)-dimensional scoring function to optimize Fβ-measure (Eq. (3.20)), for a total of

s2 + s + 1. With our method, the combined loss matrix of LFβ and LPrec has rank no more than

s2+1, so we only need an (s2+1)-dimensional scoring function to optimize precision and Fβ-measure

at the same time.

3.4.4. Optimizing Recall Using Learned Scoring Function for Fβ-measure

Factorization of recall. Recall (Eq. (3.3)) is a gain function, so we define the corresponding loss

matrix LRec as

ℓRec
y,ŷ = 1− Rec(y, ŷ) . (3.34)

Then we have the following factorization:

Proposition 3.6 (Factorization of LRec).

ℓRec
y,ŷ = 1−

∑s
j=1 yj ŷj

∥y∥1

= 1−
s∑
j=1

yj
∥y∥1

· ŷj . (3.35)

Optimizing recall using learned scoring function for Fβ-measure. Based on this factoriza-

tion, for a given instance x, if we know

Ey∼P(Y|X=x)

[ yj
∥y∥1

]
, j ∈ [s] ,

then we can choose an optimal prediction for x by choosing ŷ that minimizes Eq. (3.35). The
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question reduces to how to get them from the learned scoring function f for Fβ-measure.

Note that

1−
s∑
j=1

yj
∥y∥1

· ŷj

= 1− 1(∥y∥1 = 0) · 1(∥ŷ∥1 = 0)−
s∑

k=1

s∑
j=1

1(∥y∥1 = k) · yj
ŷj
k
.

We recognize 1(∥y∥1 = 0) and 1(∥y∥1 = k) · yj are the same factors as in Fβ-measure. So, with the

learned scoring function f for Fβ-measure, the decode function to optimize recall is

decode(f(x)) = argmin
ŷ∈Y

1− γ−1(f0(x)) · 1(∥ŷ∥1 = 0)−
s∑

k=1

s∑
j=1

γ−1(fjk(x))
ŷj
k
.

Remark. Normally, we need an s-dimensional scoring function to optimize recall (Eq. (3.35))

and an (s2 + 1)-dimensional scoring function to optimize Fβ-measure (Eq. (3.20)), for a total of

s2 + s + 1. With our method, the combined loss matrix of LFβ and LRec has rank no more than

s2 + 1, so we only need an (s2 + 1)-dimensional scoring function to optimize recall and Fβ-measure

at the same time.

3.4.5. Optimizing Top@k Using Learned Scoring Function for Fβ-measure

Factorization of Top@k. Top@k (Eq. (3.5)) is a accuracy function, so we define the corresponding

loss matrix LTop@k as

ℓTop@k
y,ŷ = 1− Top@k(y, ŷ) . (3.36)

Then we have the following factorization:
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Proposition 3.7 (Factorization of LTop@k).

ℓTop@k
y,ŷ = 1− 1(∥ŷ∥1 = k) ·

s∑
j=1

yj ŷj

= 1−
s∑
j=1

yj · ŷj · 1(∥ŷ∥1 = k)

= 1−
s∑
j=1

1(yj = 1) · ŷj · 1(∥ŷ∥1 = k) . (3.37)

Optimizing Top@k using learned scoring function for Fβ-measure. Based on this factor-

ization, for a given instance x, if we know

Ey∼P(Y|X=x)[1(yj = 1)] , j ∈ [s] ,

then we can choose an optimal prediction for x by choosing ŷ that minimizes Eq. (3.37). The

question reduces to how to get them from the learned scoring function f for Fβ-measure.

We recognize 1(yj = 1), j ∈ [s] are the same factors as in Hamming loss (Eq. (3.30)). So, with the

learned scoring function f for Fβ-measure, the decode function to optimize Top@k is

decode(f(x)) = argmin
ŷ∈Y

1−
s∑
j=1

( s∑
k=1

γ−1(fjk(x))
)
· ŷj · 1(∥ŷ∥1 = k) .

Remark. Normally, we need an s-dimensional scoring function to optimize Top@k (Eq. (3.37))

and an (s2 + 1)-dimensional scoring function to optimize Fβ-measure (Eq. (3.20)), for a total of

s2 + s+ 1. With our method, the combined loss matrix of LFβ and LTop@k has rank no more than

s2+1, so we only need an (s2+1)-dimensional scoring function to optimize Top@k and Fβ-measure

at the same time.

3.5. Consistency and Regret Transfer Bounds

In this section, we provide a regret transfer bound for the method described in Section 3.3 to

optimize two performance measures at the same time. The regret transfer bound can be easily
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generalized to optimize multiple performance measures in MLC using a learned scoring function for

Fβ-measure as described in Section 3.4.

Theorem 3.8. Assume the setup as described in Section 3.3. Let ϕ : {0, 1}×V→R+ be a λ-strongly

proper composite binary loss with link function γ : [0, 1]→V (Definition 3.2). Let ψ, decode(1), and

decode(2) be defined as in Eqs. (3.15,3.16,3.17). Then for all probability distributions D on X × [n]

and all f : X→Vr, we have

regretL
(1)

D [decode(1) ◦ f ] ≤ 2max
ŷ∈[n]

∥b(1)
ŷ ∥2 · ∥S

(1)∥2 ·
√

2

λ
· regretψD[f ] ,

and

regretL
(2)

D [decode(2) ◦ f ] ≤ 2max
ŷ∈[n]

∥b(2)
ŷ ∥2 · ∥S

(2)∥2 ·
√

2

λ
· regretψD[f ] .

Remark. This theorem shows that (ψ, decode(1)) is L(1)-calibrated, and (ψ, decode(2)) is L(2)-

calibrated.

Proof. We use ⟨·, ·⟩ to denote the standard inner product. For u ∈ Vr, let γ−1(u) ∈ [0, 1]r be such

that the i-indexed entry of γ−1(u) is simply γ−1(ui). Let η : X→∆n be class probability function

under the distribution D whose components are given by for each y ∈ [n],

ηy(x) = P(Y = y |X = x) .

We prove the regret transfer bound for (ψ, decode(1)). The second regret bound can be proven in a

similar way. To simplify notations, below, we use decode to denote decode(1), L to denote L(1), A

to denote A(1), B to denote B(1), t to denote t(1), S to denote S(1), and τ to denote τ (1).
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regretLD[decode ◦ f ]

= Ex

[
⟨η(x), ℓdecode(f(x))⟩ − min

ŷ∈[n]
⟨η(x), ℓŷ⟩

]
= Ex

[
max
ŷ
⟨η(x), ℓdecode(f(x)) − ℓŷ⟩

]
= Ex

[
max
ŷ
⟨η(x),A⊤bdecode(f(x)) + tdecode(f(x))1−A⊤bŷ − tŷ1⟩

]
= Ex

[
max
ŷ
⟨η(x),A⊤(bdecode(f(x)) − bŷ) + (tdecode(f(x)) − tŷ)1⟩

]
= Ex

[
max
ŷ

[
⟨η(x),A⊤(bdecode(f(x)) − bŷ)⟩+ (tdecode(f(x)) − tŷ)

]]
= Ex

[
max
ŷ

[
⟨η(x), (S⊤A′ + τ1⊤n )

⊤(bdecode(f(x)) − bŷ)⟩+ (tdecode(f(x)) − tŷ)
]]

= Ex

[
max
ŷ

[
⟨(S⊤A′ + τ1⊤n )η(x), (bdecode(f(x)) − bŷ)⟩+ (tdecode(f(x)) − tŷ)

]]
(by property of adjoint)

= Ex

[
max
ŷ

[
⟨S⊤A′η(x) + τ , (bdecode(f(x)) − bŷ)⟩+ (tdecode(f(x)) − tŷ)

]]
≤ Ex

[
max
ŷ

[
⟨S⊤(A′η(x)− γ−1(f(x))

)
, (bdecode(f(x)) − bŷ)⟩

]]
(
Since by Eq. (3.16), ⟨S⊤γ−1(f(x)) + τ ,bdecode(f(x)) − bŷ⟩+ (tdecode(f(x)) − tŷ) ≤ 0 for all ŷ

)
≤ Ex

[
∥S⊤(A′η(x)− γ−1(f(x))

)
∥2 ·max

ŷ
∥bdecode(f(x)) − bŷ∥2

]
(by the Cauchy-Schwarz inequality)

≤ 2max
ŷ
∥bŷ∥2 · ∥S∥2 ·Ex

[
∥A′η(x)− γ−1(f(x))∥2

]
. (3.38)

Then,

Ex

[
∥A′η(x)− γ−1(f(x))∥22

]
= Ex

[ r∑
j=1

(
(A′η(x))j − γ−1(fj(x))

)2]
. (3.39)
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Note that (A′η(x))j ∈ [0, 1] because A′ ∈ [0, 1]r×b. Since ϕ is a λ-strongly proper composite binary

loss with underlying link function γ, we have

(
(A′η(x))j − γ−1(fj(x))

)2 ≤ 2

λ
E
y∼Bernoulli

(
(A′η(x))j

)[ϕ(y, fj(x))− ϕ(y, γ((A′η(x))j
))]

.

Then Eq. (3.39) becomes

Ex

[
∥A′η(x)− γ−1(f(x))∥22

]
= Ex

[ r∑
j=1

(
(A′η(x))j − γ−1(fj(x))

)2]

≤ Ex

[
2

λ

r∑
j=1

E
y∼Bernoulli

(
(A′η(x))j

)[ϕ(y, fj(x))− ϕ(y, γ((A′η(x))j
))]]

=
2

λ
Ex

[
Ey|x∼η(x)

[
ψ(y, f(x))− inf

u∈Vr
ψ(y,u)

]]
=

2

λ
regretψD[f ] . (3.40)

Combining Eqs. (3.38) and (3.40) and applying Jensen’s inequality (to the convex function x 7→ x2)

shows

regretLD[decode ◦ f ] ≤ 2max
ŷ
∥bŷ∥2 · ∥S∥2 ·

√
2

λ
regretψD[f ] ,

as claimed.

3.6. Conclusion

In this work, we study whether it is possible and how to design a multi-label learning algorithm

such that it can optimize several performance measures at the same time. We have proposed a

method built on the theory of convex calibrated surrogates. Our method makes it possible to

design one convex calibrated surrogate with respect to several performance measures so that one

can train using the surrogate once and then apply different post-processing functions to optimize

different performance measures. We have provided examples showing how to optimize Hamming
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loss, precision, recall and Top@k using a learned scoring function for Fβ-measure. Last, we have

provided a regret transfer bound for our method, establishing its (Bayes) consistency property.
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CHAPTER 4

COMPLEX LEARNING SETTING: LEARNING FROM NOISY LABELS WITH NO

CHANGE TO THE TRAINING PROCESS

Complex Label Space
Complex Learning
Setting

Complex Performance Measure

⋆ This work

Figure 4.1: Position of Learning from Noisy Labels with No Change to the Training Process in the
thesis.

This chapter was previously published as Mingyuan Zhang, Jane Lee, and Shivani Agarwal. Learn-

ing from noisy labels with no change to the training process. In Proceedings of the 38th International

Conference on Machine Learning, volume 139, pages 12468–12478. PMLR, 2021. As the sole first

author, I developed all the results (both theoretical and experimental) in this chapter.

In this chapter, we shift gears to begin discussing the second dimension of complexity: complex

learning settings. We focus on multiclass learning from noisy labels and show how to design consis-

tent noise-corrected algorithms to handle label noise without changing the training process.
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4.1. Background of Complex Learning Setting

In machine learning, complex learning settings refer to scenarios that involve additional challenges

or complexities beyond traditional supervised learning tasks. These complexities can arise due to

various factors, such as the nature of the data, the learning environment, or the desired output. Ad-

dressing these challenges effectively often requires specialized algorithms or adaptations of existing

methods. Examples of complex learning settings include:

Noisy labels: Noisy labels refer to situations in which some of the labels associated with instances

in the training sample are incorrect or inaccurate. This can occur due to various reasons, such

as human labeling errors, misalignments between labels and instances, or noise introduced during

data collection. Learning from noisy labels is challenging because incorrect or inaccurate labels can

adversely affect the performance of the machine learning model, leading to suboptimal predictions

or increased generalization error.

Missing or partial labels: In some cases, labels might be unavailable or only partially provided

for certain instances in the training data. This can happen when obtaining full labels is expensive,

time-consuming, or when it is inherently difficult to provide complete label information for certain

instances. In such cases, learning algorithms must make the most of the available labeled data while

also leveraging the structure in the unlabeled or partially labeled data.

Imbalanced data: Imbalanced data refers to a situation in a classification problem where the

distribution of classes in the dataset is significantly skewed, with some classes having much fewer

instances than others. This imbalance can lead to difficulties in learning a classifier, as algorithms

may become biased towards the majority classes and underperform on the minority classes. As a

result, the classifier’s performance may be poor on the instances with underrepresented classes, even

if the overall accuracy appears to be high.

Semi-supervised learning: Semi-supervised learning is a machine learning paradigm that involves

both labeled and unlabeled data during the training process. It lies between supervised learning,

which relies solely on labeled data, and unsupervised learning, which uses only unlabeled data.

65



Semi-supervised learning aims to make the most of the available labeled data while also leveraging

the structure present in the unlabeled data to improve the learning process and learn a better

classifier.

Weakly supervised learning: Weakly supervised learning is a learning paradigm in which in-

stances in the training data only have imprecise, or incomplete supervision signals. The supervision

information is often considered weak because it is less accurate or less informative than the fully

labeled data typically used in supervised learning settings. The main goal of weakly supervised

learning is to make the most of the available weak supervision signals to learn a good model.

Active learning: In active learning, learning algorithms actively select the most informative in-

stances from the available unlabeled data pool for labeling by an oracle or expert. The primary goal

of active learning is to minimize the labeling effort required to achieve a desired level of performance

by intelligently choosing the most informative instances to label.

Transfer learning: Transfer learning focuses on leveraging knowledge learned from one task or

domain to improve the learning process in other (usually related) tasks or domains. The main

goal of transfer learning is to reduce the amount of data or training time required to achieve good

performance in the target task by exploiting the knowledge gained from the source task. It is

closely related to feature learning and pretraining. Prominent examples of transfer learning include

pretrained image classification models in computer vision and pretrained language models in natural

language processing.

Online learning: In online learning, the model learns and adapts to new data points one at a time

or in small batches as they become available. This is in contrast to the traditional batch learning

setting, where the model is trained on a fixed dataset all at once.

Multi-task learning: Multi-task learning aims to improve the performance of multiple related

tasks by learning them jointly, instead of training for each task independently. The main idea

behind multi-task learning is to exploit the commonalities and relationships among the tasks to

allow the model to learn shared knowledge, representations, or structures across the tasks.
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Figure 4.2: Learning from noisy labels. (Images in the left boxes are taken from the CIFAR-10
dataset (Krizhevsky and Hinton, 2009).)

Reinforcement learning: Reinforcement learning focuses on training agents to make decisions

by interacting with an environment. In reinforcement learning, an agent learns to choose the best

actions to take in different situations to maximize cumulative rewards. The learning process is

guided by the feedback received from the environment in the form of rewards (or penalties) based

on the agent’s actions.

As real-world problems often involve complexities in many different aspects, by developing a deep un-

derstanding of complex learning settings, researchers can design more effective, robust, and scalable

algorithms to tackle real-world challenges. It could also lead to advancements in model architecture

design, representation learning, and pretrained models across various domains, ultimately benefiting

a wide range of applications and industries.

4.2. Introduction

4.2.1. Background and Our Contributions

In many applications of machine learning, one receives noisy labels during training. This can happen

for a variety of reasons, including human labeling errors, sensor measurement errors, distributed

label collection via crowdsourcing, automatic label collection via internet crawling, and many others.

Consequently, there has been much interest in recent years in developing learning algorithms that

can learn accurate classifiers from data with noisy labels (Frénay and Verleysen, 2014; Song et al.,
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2023).

We focus here on the setting of label-dependent noise, where the (random) noise in a label depends

on the label but not on the instance (the more general setting of label- and instance-dependent noise

is also of interest (Menon et al., 2018; Cheng et al., 2020), but we do not focus on that here). An

early example of label-dependent noise for binary classification that has been widely studied in the

PAC learning literature is the random classification noise (RCN) model, in which a binary label y is

flipped to the opposite label with a fixed probability γ ∈ [0, 12) (Angluin and Laird, 1987; Bylander,

1994; Aslam and Decatur, 1996; Kearns, 1998; Blum and Mitchell, 1998; Cesa-Bianchi et al., 1999).

More recently, Natarajan et al. (2013) generalized the RCN model and proposed the class-conditional

random label noise (CCN) model for binary classification, in which flip probabilities for positive

and negative labels can be different. This was then extended to the more general multiclass case,

wherein a label y is flipped to a label ỹ with some noise probability that depends on y and ỹ

(van Rooyen and Williamson, 2017; Patrini et al., 2017; Ghosh et al., 2017; Wang et al., 2018).

The primary challenge in learning from noisy labels is to design algorithms which, despite being

given data with noisy labels as input, can learn accurate classifiers for the true, clean distribution

(see Figure 4.2 for a summary). In particular, it is desirable to design algorithms which, when

trained using a sufficiently rich function class, are statistically consistent for the clean distribution

(i.e. that converge to a Bayes optimal classifier for the clean distribution). For the general mul-

ticlass CCN model, two such algorithms have been proposed: the unbiased estimator method of

van Rooyen and Williamson (2017) (which builds on a method of Natarajan et al. (2013) for binary

labels), and the forward method of Patrini et al. (2017) (the ‘backward’ method of Patrini et al.

(2017) is the same as the unbiased estimators method). Both algorithms make use of the framework

of surrogate loss minimization, and both require modifying the surrogate loss to correct for the

noise. In practice, this means modifying the training algorithm.

In this work, we take a first-principles approach, and show that, for the general multiclass CCN

model, one can design statistically consistent learning algorithms without modifying the training

process. In particular, by examining the form of the Bayes optimal classifier for any target (cost-
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sensitive) multiclass loss, and the relation between the noisy and clean distributions over labels,

we show that it suffices to simply implement a standard class probability estimation (CPE) algo-

rithm (such as multiclass logistic regression) on the given noisy training data, and then apply a

noise-corrected plug-in step at prediction time. For practitioners lacking expertise to modify the

optimization process, or when retraining is a bottleneck, the post-processing step at prediction time

can be easier to implement and use.

To establish consistency of our method (when trained with a sufficiently rich function class), we

derive a quantitative regret transfer bound which shows that the target regret on the true, clean

distribution can be upper bounded by the CPE regret on the noisy distribution. We also extend

the notion of strong properness, defined for binary losses by Agarwal (2014), to multiclass surrogate

losses; for CPE learners that minimize such surrogate losses (including for example the multiclass

logistic/cross-entropy loss), we provide a regret bound in terms of the surrogate regret on the noisy

distribution. Our bound suggests that as the noise matrix becomes closer to being singular, the

sample size needed to achieve a given target performance level becomes larger.

In their basic forms, the methods of both van Rooyen and Williamson (2017) and Patrini et al.

(2017), as well as our noise-corrected plug-in method, all assume that the noise flip probabilities are

known. In practice, one may need to estimate the noise probabilities from the given noisy data. In

recent years, a number of approaches have been proposed for estimating noise flip probabilities; these

are generally based on identifying a small number of anchor points (instances that belong to a certain

class with probability one). In particular, Patrini et al. (2017) proposed a noise estimation method

based on anchor points, with the intent to provide an ‘end-to-end’ noise-estimation-and-learning

method. Later, Yao et al. (2020) exploited the divide-and-conquer paradigm to propose another

noise estimation method, also based on anchor points. However, it turns out that both methods

do not always work correctly; we identify an error in their methods (specifically, the error is in the

method for computing anchor points), and provide conditions on the noise under which the methods

work or fail. We also propose an iterative noise estimation heuristic that aims to partly correct the

error; while the heuristic is not guaranteed to converge or recover the correct noise probabilities, it
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works well in our experiments, sometimes outperforming the methods of Patrini et al. (2017) and

Yao et al. (2020). Moreover, all three noise estimation methods require a CPE model to be learned

from the noisy data, which in our case comes for free, with no further training required; thus our

method also provides a more efficient ‘end-to-end’ solution.

Our experiments confirm that our noise-corrected plug-in method performs comparably to previous

methods, while requiring no change to the training process.

Relationship with previous work in the binary case. As noted above, the works on learn-

ing from noisy labels in multiclass classification that are most closely related to ours are those of

van Rooyen and Williamson (2017) and Patrini et al. (2017). In the special case of binary classi-

fication, two works are most directly relevant: those of Natarajan et al. (2013) and Menon et al.

(2015). Natarajan et al. (2013) studied the CCN model for binary classification, and expressed

the Bayes optimal classifier for the noisy distribution as a plug-in rule involving the clean class

probability function (Lemma 7), and then used this to reduce the CCN learning problem to a cost-

sensitive classification problem on the noisy data using classification-calibrated surrogate losses. In

contrast, we express the Bayes optimal classifier for the clean distribution as a plug-in rule involving

the noisy class probabilities, which can be estimated directly from the noisy data (we use strongly

proper composite surrogate losses for this estimation). Menon et al. (2015) studied the more general

mutually contaminated distributions (MCD) noise model for binary classification, and while they

focused mostly on the balanced error (BER) and area under the ROC curve (AUC) metrics, they

also used strongly proper composite (binary) surrogate losses, and applied their analysis to derive a

regret transfer bound for the 0-1 error as well (Proposition 7). When specialized to the CCN model,

their bound for binary classification with 0-1 loss can be viewed as a special case of our bound in

Theorem 4.3 (our bound holds for multiclass classification with general losses).

4.2.2. Notation

For an integer n, we denote by [n] the set of integers {1, . . . , n}, and by ∆n the probability simplex

{p ∈ Rn+ :
∑n

y=1 py = 1}. For a vector a, we denote by ∥a∥2 the L2 norm of a. For a matrix A,

we denote by ∥A∥F the Frobenius norm of A, by ∥A∥2 the induced 2-norm of A (largest singular
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value of A), and by ay the y-th column vector of A. We use ey to denote a standard basis vector

with y-th element 1.

4.2.3. Related Work

Noise models in learning from noisy labels. In learning from noisy labels, several noise mod-

els have been proposed and studied. In random classification noise (RCN) model, each label is

flipped with a fixed probability ρ ∈ [0, 12) (Angluin and Laird, 1987; Bylander, 1994; Kearns, 1998;

Cesa-Bianchi et al., 1999; van Rooyen et al., 2015). A more general noise model is class-conditional

noise (CCN), which says noisy labels are generated according to a fixed conditional distribution

given the true class (Natarajan et al., 2013; Scott et al., 2013; Menon et al., 2015; Liu and Tao,

2016; van Rooyen and Williamson, 2017; Patrini et al., 2017). However, both RCN and CCN de-

pend only on the labels. The most general label noise, instance-dependent and label-dependent noise

(ILN), also depends on the instance (Menon et al., 2018; Cheng et al., 2020). In multi-label learn-

ing from noisy labels, independent flipping noise (IFN) model is commonly used, in which each

label (tag) is independently flipped from active to non-active (or vice versa) with some probability

(Kumar et al., 2020; Zhao and Gomes, 2021; Xie and Huang, 2023). Below we briefly discuss some

developments in these fields and focus on works that are the most related to our study. For de-

tailed surveys about learning from noisy labels, we refer the reader to Frénay and Verleysen (2014);

Song et al. (2023); Han et al. (2020).

Binary learning from noisy labels. The initial studies focused on the RCN model and PAC-

style guarantees (Angluin and Laird, 1987; Bylander, 1994; Aslam and Decatur, 1996; Kearns, 1998;

Blum and Mitchell, 1998; Cesa-Bianchi et al., 1999). Some recent studies concerned about designing

surrogate losses robust to RCN (Long and Servedio, 2010; van Rooyen et al., 2015; Ghosh et al.,

2015). It was also mentioned in Menon et al. (2015) that for RCN, the noise rate is not needed for

consistent predictions.

For CCN, Natarajan et al. (2013) and Menon et al. (2015) are the most related studies to ours and

they assumed CCN is known. Natarajan et al. (2013) showed two ways of correcting surrogate

losses by the noise rates so that minimizing the modified surrogates with noisy labels is consistent
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w.r.t. the true distribution. Menon et al. (2015) proposed to learn class probability estimation

(CPE) models from noisy labels and then to apply a threshold depending on the noise rates. Other

methods dealing with CCN include Stempfel and Ralaivola (2009); Scott et al. (2013); Scott (2015);

Liu and Tao (2016); Patrini et al. (2016); Liu and Guo (2020). There are also results when noise

rates are not known. Scott et al. (2013); Scott (2015); Menon et al. (2015); Liu and Tao (2016)

proposed consistent estimators for noise rates. Liu and Guo (2020) used peer loss fcuntions.

For ILN, Menon et al. (2018) studied consistency properties with instance-dependent (but label-

independent) noise, and a subclass of general ILN models which they termed as boundary consistent

noise model. Cheng et al. (2020) studied bounded ILN models and proposed to use ‘distilled’

examples to learn from such noise.

Multiclass learning from noisy labels. Symmetric CCN here is the multiclass version of RCN

in binary classification. Ghosh et al. (2017) proved a sufficient condition for a loss function to be

robust to symmetric CCN. Wang et al. (2018) proposed an importance re-weighting method for

symmetric CCN.

In an elegant study, van Rooyen and Williamson (2017) studied in detail learning from known CCN

for multiclass problems. They generalized the unbiased estimator method in Natarajan et al. (2013)

to correct surrogate losses using noise rates in the multiclass setting and provided upper and lower

risk bounds. They also studied loss functions that are invariant to CCN and showed a method to

construct such losses. Patrini et al. (2017) proposed two ways of modifying losses by the known

CCN: forward and backward, and they showed the minimizer of the modified loss under the noisy

distribution coincide with the minimizer of the original loss under the clean distribution. They also

extended results in Menon et al. (2015) to estimate the noise when it is unknown.

4.2.4. Organization

After preliminaries in Section 4.3, we describe our noise-corrected plug-in method in Section 4.4.

Section 4.5 gives regret transfer bounds; Section 4.6 discusses noise estimation. Section 4.7 summa-

rizes our experiments. Section 4.8 concludes this work with a brief discussion.
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4.3. Preliminaries

The problem of (multiclass) learning from noisy labels can be described as follows. There is an

instance space X , and a set of n class labels Y, which we will take without loss of generality

to be Y = [n]. There is a (unknown) joint probability distribution D on X × Y from which

labeled examples (X,Y ) are drawn. In the standard (non-noisy) supervised learning setting, the

learner would be given training examples drawn directly from D. When learning from noisy labels,

however, the learner does not get clean labels Y ; instead, the learner sees noisy examples (X, Ỹ ),

where Ỹ denotes a noisy version of Y . In particular, the learner receives a noisy training sample

S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X ×Y)m, and the goal is to learn a classifier h : X→Y that performs

well with respect to the clean distribution D.

We consider here the class-conditional random label noise (CCN) model (Natarajan et al., 2013;

van Rooyen and Williamson, 2017), wherein a label y is randomly flipped to a label ỹ with some

probability γy,ỹ that depends on y and ỹ. In particular, the CCN model is characterized by a

row-stochastic noise matrix C ∈ [0, 1]n×n with entries γy,ỹ, such that for each y, ỹ ∈ [n],

P(Ỹ = ỹ |Y = y) = γy,ỹ .

The noisy training examples seen by the learner can therefore be viewed as being drawn IID from a

‘noisy’ distribution D̃ on X × Y, wherein an example (X,Y ) is first drawn randomly according to

D, and then noise is injected according to the noise matrix C to generate (X, Ỹ ).

Thus, given a noisy training sample S̃ drawn according to the noisy distribution D̃ as above, the

goal of the learner is to learn a classifier h : X→Y that performs well under the clean distribution

D. To measure performance, we consider a general multiclass loss matrix L ∈ Rn×n+ , with entries

ℓy,ŷ indicating the loss incurred on predicting ŷ when the true label is y (the 0-1 loss L0-1 with

ℓ0-1
y,ŷ = 1(ŷ ̸= y) is a special case). The performance of the classifier h is then measured by the
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L-generalization error or L-risk under D:

erLD[h] = E(X,Y )∼D
[
ℓY,h(X)

]
.

4.4. Noise-Corrected Plug-in Method

The approach we describe is conceptually very simple. We will denote by η, η̃ : X→∆n the (vector)

class probability functions under the clean distribution D associated with clean labeled examples

and the noisy distribution D̃ associated with noisy examples, respectively, with components given

by

ηy(x) = P(Y = y |X = x)

η̃y(x) = P(Ỹ = y |X = x)

for each y ∈ [n]. It is easy to see that

η̃y(x) =
∑
y′∈[n]

P(Ỹ = y |Y = y′) ·P(Y = y′ |X = x)

=
∑
y′∈[n]

γy′,y · ηy′(x)

= c⊤y η(x) ,

which gives

η̃(x) = C⊤η(x) .

Therefore, provided C is invertible, we have

η(x) = (C⊤)−1η̃(x) . (4.1)

This suggests that once we have an estimate of the noisy class probability function η̃, we may be

able to ‘de-noise’ it to construct an estimate of the clean class probability function η. This idea in

its basic form can be problematic, since C−1 is not necessarily a stochastic matrix; in particular, C⊤
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generally maps probability vectors η(x) in the probability simplex ∆n to noisy probability vectors

η̃(x) in a limited subset of the simplex ∆n, and in general, an estimate of η̃(x) could fall outside that

subset, so that multiplying the estimate by (C⊤)−1 could then lead to an invalid ‘estimate’ of η(x)

that falls outside ∆n. Nevertheless, we get around this issue by never really needing to construct

a fully valid estimate of η(x); instead, we simply use the above relation to derive a noise-corrected

plug-in classifier that operates directly on estimates of the noisy class probabilities η̃(x). Our regret

transfer bounds in Section 4.5 will establish that this indeed leads to a correct learning approach.

We start by explaining our approach in the context of the multiclass 0-1 loss, and then describe the

extension to general multiclass losses.

Multiclass 0-1 loss. As is well known, the Bayes optimal classifier for the multiclass 0-1 loss is

given by

h0-1,∗
D (x) = argmax

y∈[n]
ηy(x) .

By Eq. (4.1), we can re-write this in terms of the noisy class probability function η̃ as follows:

h0-1,∗
D (x) = argmax

y∈[n]

(
(C⊤)−1η̃(x)

)
y

=: plugin0-1
C

(
η̃(x)

)
.

Notably, this means that during training, we can simply construct a multiclass CPE model ̂̃η :

X→∆n for the noisy class probability function η̃, by running any standard multiclass CPE method

(such as standard multiclass logistic regression) on the given noisy training examples, and then

construct a noise-corrected classifier ĥ : X→Y by applying the above noise-corrected plug-in step

during prediction:

ĥ(x) = plugin0-1
C

(̂̃η(x)) .
Multiclass cost-sensitive losses. More generally, consider any multiclass loss matrix L ∈ Rn×n+ .

The Bayes optimal classifier for L (which for any instance x, chooses a prediction that minimizes
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the expected loss under L) is given by

hL,∗D (x) = argmin
y∈[n]

η(x)⊤ℓy .

As for the 0-1 loss, by Eq. (4.1), we can re-write this in terms of the noisy class probability function

η̃ as follows:

hL,∗D (x) = argmin
y∈[n]

η̃(x)⊤C−1ℓy

= argmin
y∈[n]

η̃(x)⊤
(
C−1L

)
y

=: pluginL
C

(
η̃(x)

)
.

Again, this means that during training, we can use a standard multiclass CPE learner on the noisy

examples to construct a CPE model ̂̃η : X→∆n for the noisy class probability function η̃, and then

construct a noise-corrected classifier ĥ : X→Y by applying the above noise-corrected plug-in step

during prediction:

ĥ(x) = pluginL
C

(̂̃η(x)) .
Note that one can pre-compute C−1L, and so at prediction time, in order to implement pluginL

C(
̂̃η(x)),

one needs to compute n inner products (of the column vectors of C−1L with ̂̃η(x)), for a total com-

putational cost of O(n2).7,8

Our final algorithm is shown in Algorithm 4.1. An example of a CPE learner that minimizes a

(strongly) proper composite multiclass surrogate loss is provided in Section 4.5.2. In settings where

the noise matrix C is not known, one may need to estimate C from the noisy training sample itself;

this is discussed in Section 4.6.
7Also note that if one has an implementation of the standard plug-in step pluginL(·) (without noise correction)

for general (cost-sensitive) loss matrices L, one can simply use that implementation with loss L̃ = C−1L (since
pluginL

C

(̂̃η(x)) = pluginL̃
(̂̃η(x))).

8This also applies to the 0-1 loss: one can simply pre-compute C−1L0-1, and then at prediction time, com-
pute n inner products (of the column vectors of C−1L0-1 with ̂̃η(x)) for a cost of O(n2) (and predict according to
argminy∈[n]

̂̃η(x)⊤(C−1L0-1)y).
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Algorithm 4.1 Noise-Corrected Plug-in Algorithm
1: Inputs:

(1) Noisy training sample,
S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m

(2) Target loss matrix L ∈ Rn×n+

(3) (If known) Noise matrix C ∈ [0, 1]n×n

2: Run a standard CPE learner on S̃:̂̃η = CPE-Learner( S̃ )
3: If C unknown: Construct estimate Ĉ (see Section 4.6)
4: Output:

If C known: ĥ = pluginL
C ◦ ̂̃η

If C unknown: ĥ = pluginL
Ĉ
◦ ̂̃η

4.5. Regret Transfer Bounds and Consistency

In this section, we provide quantitative regret transfer bounds for our noise-corrected plug-in algo-

rithm; these bounds also establish that if the noisy CPE method used in training is consistent (i.e.,

converges to the correct noisy class probabilities), then our approach is consistent for the target

learning problem. We derive our results for the multiclass case with a general loss matrix L; they

can be specialized to the binary and/or 0-1 case as needed. In particular, define the L-regret (or

the excess L-risk) of a classifier h : X→Y under the clean distribution D as follows:

regretLD[h] = erLD[h]− inf
h′:X→Y

erLD[h
′] . (4.2)

Our goal is to upper bound this L-regret for our learned classifier ĥ; if this regret converges (in

probability, over the random draw of the noisy training sample) to zero as the training sample size

increases, then the algorithm is (Bayes) consistent for L under D.

In Section 4.5.1, we provide a general result upper bounding the target L-regret of our learned

classifier ĥ = pluginL
C ◦ ̂̃η (on the clean distribution D) in terms of the noisy CPE regret of ̂̃η (on

the noisy distribution D̃). In Section 4.5.2, we specialize our result to CPE methods that learn ̂̃η
by minimizing a strongly proper composite surrogate loss (extending the notion of strong properness

defined for binary losses by Agarwal (2014) to the multiclass case), and apply this result in particular

to the multiclass logistic loss, which we show to be 1-strongly proper composite.
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4.5.1. Regret Transfer Bound for General CPE Methods

We have the following result for our noise-corrected plug-in method using any CPE learner:

Theorem 4.1. For any noisy CPE model ̂̃η : X→∆n and resulting noise-corrected plug-in classifier

ĥ = pluginL
C ◦ ̂̃η, we have

regretLD[ ĥ ]

≤ 2max
y

∥∥ℓy∥∥2 · ∥∥C−1
∥∥
2
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
2

]
.

Proof. We use ⟨·, ·⟩ to denote the standard inner product.

regretLD[ ĥ ]

= EX
[
⟨η(X), ℓ

ĥ(X)
⟩ − min

y∈[n]
⟨η(X), ℓy⟩

]
= EX

[
max
y∈[n]
⟨η(X), ℓ

ĥ(X)
− ℓy⟩

]
= EX

[
max
y∈[n]
⟨(C⊤)−1η̃(X), ℓ

ĥ(X)
− ℓy⟩

]
= EX

[
max
y∈[n]
⟨η̃(X),C−1(ℓ

ĥ(X)
− ℓy)⟩

]
(by property of adjoint)

≤ EX
[
max
y∈[n]
⟨η̃(X)− ̂̃η(X),C−1(ℓ

ĥ(X)
− ℓy)⟩

]
(since by the definition of ĥ(X), ⟨̂̃η(X),C−1(ℓ

ĥ(X)
− ℓy)⟩ ≤ 0 ∀y ∈ [n])

≤ EX

[∥∥̂̃η(X)− η̃(X)
∥∥
2
·
∥∥C−1

∥∥
2
·max
y∈[n]

∥∥ℓ
ĥ(X)

− ℓy
∥∥
2

]
(by Cauchy-Schwarz inequality)

≤ 2max
y∈[n]

∥∥ℓy∥∥2 · ∥∥C−1
∥∥
2
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
2

]

In other words, if the learned noisy CPE model ̂̃η is close to the correct noisy class probabilities

η̃, in the sense that EX
[∥∥̂̃η(X)− η̃(X)

∥∥
2

]
is small, then the target L-regret of the noise-corrected
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plug-in classifier on the clean distribution D, regretLD[ ĥ ], is also small. In particular, if the CPE

learner is consistent for the noisy distribution in the sense that EX
[∥∥̂̃η(X) − η̃(X)

∥∥
2

] P−→0 (as the

sample size increases), then the overall noise-corrected plug-in method is (Bayes) L-consistent for

the clean distribution D, in the sense that regretLD[ ĥ ]
P−→0.

Note that the above bound depends on the noise matrix C through the term
∥∥C−1

∥∥
2
. This is the

largest singular value of C−1, or equivalently, the reciprocal of the smallest singular value of C.

Thus, as the noise matrix C approaches singularity, the bound becomes larger. This suggests that

as C becomes closer to being singular, we may need a higher quality class probability approximation

on the noisy distribution D̃ (i.e. larger sample size) to reach the same level of L-regret on the clean

distribution D. As we will see in Section 4.7, our experiments also support this observation.

4.5.2. Regret Transfer Bound for CPE Methods Minimizing a Strongly Proper Composite Surrogate

Loss

In practice, a popular approach for learning CPE models is to minimize a suitable (convex) surrogate

loss, such as the multiclass logistic loss (this is also what we use in our experiments). We show that

for a suitable class of such surrogate losses, the CPE regret can be further upper bounded in terms

of the surrogate loss based regret.

Specifically, let ψ : [n] × Rn−1→R+ be any surrogate loss that acts on (n − 1)-dimensional ‘score

vectors’ in Rn−1, and let λ : ∆n→Rn−1 be an invertible ‘link’ function.9 Then ψ is said to be

strictly proper composite with link function λ if for all p ∈ ∆n and u ∈ Rn−1, u ̸= λ(p):

EY∼p

[
ψ(Y,u)− ψ(Y,λ(p))

]
> 0 .

It is well known that minimizing such a strictly proper composite surrogate loss over a suitably rich

function class provides consistent class probability estimates (Williamson et al., 2016). For binary

surrogates, Agarwal (2014) defined a stronger condition that allows the derivation of quantitative
9More generally, one can consider surrogate losses ψ : [n] × C→R+ acting on score vectors in any convex set C

that is in 1-to-1 correspondence with ∆n, such as C = {u ∈ Rn :
∑n

i=1 ui = 0}. It is also common to consider
‘over-parameterized’ surrogate losses acting on C = Rn; e.g. see the discussion on the multiclass logistic surrogate
loss toward the end of the section.
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bounds in terms of the surrogate regret. Here we extend this notion to the multiclass case and apply

it to obtain bounds for our noisy labels problem.10

Definition 4.1 (Strongly proper composite multiclass losses). Let s > 0. We say a multiclass

surrogate loss ψ : [n] × Rn−1 → R+ is s-strongly proper composite with (invertible) link function

λ : ∆n → Rn−1 if for all p ∈ ∆n and u ∈ Rn−1:

EY∼p

[
ψ(Y,u)− ψ(Y,λ(p))

]
≥ s

2

∥∥λ−1(u)− p
∥∥2
2
.

As a concrete example, consider the widely used multiclass logistic surrogate loss:

Example 4.1 (Multiclass logistic loss and link function). The multiclass logistic loss ψmlog : [n]×

Rn−1 → R+ is defined as

ψmlog(y,u) =


− ln

(
exp(uy)

1+
∑n−1

i=1 exp(ui)

)
if y ∈ [n− 1]

ln
(
1 +

∑n−1
i=1 exp(ui)

)
if y = n .

The loss is often used with the invertible link function λmlog : ∆n → Rn−1, which together with its

inverse λ−1
mlog : Rn−1 → ∆n is given by

λmlog(p)=


ln( p1pn )

...

ln(pn−1

pn
)

; λ−1
mlog(u)=



exp(u1)

1+
∑n−1

i=1 exp(ui)

...
exp(un−1)

1+
∑n−1

i=1 exp(ui)

1
1+

∑n−1
i=1 exp(ui)


.

We note that the multiclass logistic loss above is often implemented in an ‘over-parameterized’ form,

with score vectors in C = Rn and the softmax function used for ‘inverting’ such score vectors to class
10Strong properness implies strict properness. Most commonly used strictly proper composite losses are also

strongly proper composite, but the latter condition allows for stronger quantitative guarantees.
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probabilities (indeed, softmax is a many-to-one mapping).11 We have the following result showing

that ψmlog is strongly proper composite:

Lemma 4.2. The multiclass logistic loss ψmlog is 1-strongly proper composite with link function

λmlog.

Proof. We will show for all p ∈ ∆n and u ∈ Rn−1,

EY∼p

[
ψmlog(Y,u)− ψmlog(Y,λmlog(p))

]
≥ 1

2

∥∥λ−1
mlog(u)− p

∥∥2
1
≥ 1

2

∥∥λ−1
mlog(u)− p

∥∥2
2
.

Fix p ∈ ∆n and u ∈ Rn−1. Then

EY∼p

[
ψmlog(Y,u)− ψmlog(Y,λmlog(p))

]
= −

∑
i∈[n]

pi ln
(
(λ−1

mlog(u))i
)
+
∑
i∈[n]

pi ln(pi)

=
∑
i∈[n]

pi ln
( pi

(λ−1
mlog(u))i

)
= DKL(p||λ−1

mlog(u)) by the definition of Kullback-Leibler divergence

≥ 1

2

∥∥p− λ−1
mlog(u)

∥∥2
1

using Pinsker’s inequality and properties of total variation distance

≥ 1

2

∥∥p− λ−1
mlog(u)

∥∥2
2
.

A CPE learner minimizing a strongly proper composite surrogate loss (over noisy training examples)

is shown in Algorithm 4.2. (Instantiating this with the multiclass logistic loss ψmlog above and the

class of linear scoring functions leads to the multiclass linear logistic regression algorithm.)

In what follows, for a surrogate loss ψ : [n] × Rn−1→R+, we will define the ψ-generalization error
11The over-parameterized multiclass logistic loss is also sometimes referred to as the cross-entropy loss.
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of a scoring function f : X→Rn−1 under D̃ as

erψ
D̃
[f ] = E

(X,Y )∼D̃
[
ψ(Y, f(X))

]
,

and the ψ-regret of f under D̃ as

regretψ
D̃
[f ] = erψ

D̃
[f ]− inf

f ′:X→Rn−1
erψ
D̃
[f ′] .

Then we have the following regret transfer bound:

Theorem 4.3. Let s > 0. Let ψ : [n] × Rn−1 → R+ be a s-strongly proper composite surrogate

loss with (invertible) link function λ : ∆n → Rn−1. For any scoring model ̂̃f : X→Rn−1 being

used as a (noisy) CPE model via ̂̃η(x) = λ−1(
̂̃
f(x)), and resulting noise-corrected plug-in classifier

ĥ = pluginL
C ◦

(
λ−1 ◦ ̂̃f), we have

regretLD[ ĥ ] ≤ 2max
y

∥∥ℓy∥∥2 · ∥∥C−1
∥∥
2
·
√

2

s
regretψ

D̃
[
̂̃
f ] .

Proof. By Theorem 4.1, we have

regretLD[ ĥ ] ≤ 2max
y

∥∥ℓy∥∥2 · ∥∥C−1
∥∥
2
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
2

]
. (4.3)

Then, since ψ is s-strongly proper composite with link function λ, we have

regretψ
D̃
[
̂̃
f ]

= EX

[
EY |X∼η̃(X)

[
ψ(Y,

̂̃
f(X))

]
− inf

u∈Rn−1
EY |X∼η̃(X)

[
ψ(Y,u)

]]
= EX

[
EY |X∼η̃(X)

[
ψ(Y,

̂̃
f(X))− ψ(Y,λ(η̃(X)))

]]
(by definition of strongly proper composite multiclass loss)

≥ EX

[s
2

∥∥λ−1(
̂̃
f(X))− η̃(X)

∥∥2
2

]
=
s

2
EX

[∥∥̂̃η(X)− η̃(X)
∥∥2
2

]
(4.4)
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Algorithm 4.2 CPE Learner Minimizing a Strongly Proper Composite Surrogate Loss (on Noisy
Data)
1: Input: Noisy training sample,

S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m
2: Parameters:

(1) Strongly proper composite loss ψ : [n] × Rn−1→R+ with (invertible) link function λ :
∆n→Rn−1;
(2) Class F of functions f : X→Rn−1

3: Compute ̂̃f ∈ argminf∈F
∑m

i=1 ψ(ỹi, f(xi))

4: Output: ̂̃η = λ−1 ◦ ̂̃f
Combining Eqs. (4.3, 4.4), and applying Jensen’s inequality (to the convex function x 7→ x2)

establishes the result.

Thus in particular, if the CPE learner in Algorithm 4.2 minimizes a strongly proper composite

surrogate loss ψ over a universal function class F (with suitable regularization), thus ensuring that

regretψ
D̃
[
̂̃
f ]

P−→0, then we have that regretLD[ ĥ ]
P−→0 as desired.

4.5.3. Improved Regret Transfer Bound

Below, we show an improved regret transfer bound for the multiclass logistic loss ψmlog (Example

4.1) that depends on the noise matrix C through ∥(C⊤)−1∥1 instead of ∥C−1∥2 as shown in Theorem

4.3.12

We start by showing the following improved result for our noise-corrected plug-in method using any

CPE learner (the improved bound depends on the noise matrix C through ∥(C⊤)−1∥1 instead of

∥C−1∥2 as shown in Theorem 4.1):

Theorem 4.4. For any noisy CPE model ̂̃η : X→∆n and resulting noise-corrected plug-in classifier

ĥ = pluginL
C ◦ ̂̃η, we have

regretLD[ ĥ ]

≤ 2max
y

∥∥ℓy∥∥∞ · ∥∥(C⊤)−1
∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
.

12This result is not in our conference paper (Zhang et al., 2021) on which this chapter is based.
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Proof. We use ⟨·, ·⟩ to denote the standard inner product.

regretLD[ ĥ ]

= EX
[
⟨η(X), ℓ

ĥ(X)
⟩ − min

y∈[n]
⟨η(X), ℓy⟩

]
= EX

[
max
y∈[n]
⟨η(X), ℓ

ĥ(X)
− ℓy⟩

]
= EX

[
max
y∈[n]
⟨(C⊤)−1η̃(X), ℓ

ĥ(X)
− ℓy⟩

]
= EX

[
max
y∈[n]
⟨η̃(X),C−1(ℓ

ĥ(X)
− ℓy)⟩

]
(by property of adjoint)

≤ EX
[
max
y∈[n]
⟨η̃(X)− ̂̃η(X),C−1(ℓ

ĥ(X)
− ℓy)⟩

]
(since by the definition of ĥ(X), ⟨̂̃η(X),C−1(ℓ

ĥ(X)
− ℓy)⟩ ≤ 0 ∀y ∈ [n])

≤ EX
[
max
y∈[n]
⟨(C⊤)−1(η̃(X)− ̂̃η(X)), ℓ

ĥ(X)
− ℓy⟩

]
≤ EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1
·
∥∥(C⊤)−1

∥∥
1
·max
y∈[n]

∥∥ℓ
ĥ(X)

− ℓy
∥∥
∞

]
(by Hölder inequality)

≤ 2max
y∈[n]

∥∥ℓy∥∥∞ · ∥∥(C⊤)−1
∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]

Theorem 4.5. Let ψmlog : [n] × Rn−1 → R+ be the multiclass logistic loss with (invertible) link

function λmlog : ∆n → Rn−1 as in Example 4.1. For any scoring model ̂̃f : X→Rn−1 being used

as a (noisy) CPE model via ̂̃η(x) = λ−1
mlog(

̂̃
f(x)), and resulting noise-corrected plug-in classifier

ĥ = pluginL
C ◦

(
λ−1

mlog ◦
̂̃
f
)
, we have

regretLD[ ĥ ] ≤ 2max
y

∥∥ℓy∥∥∞ · ∥∥(C⊤)−1
∥∥
1
·
√

2 regretψmlog

D̃
[
̂̃
f ] .

Proof. By Theorem 4.4, we have

regretLD[ ĥ ] ≤ 2max
y

∥∥ℓy∥∥∞ · ∥∥(C⊤)−1
∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
. (4.5)
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Then we have

regretψmlog

D̃
[
̂̃
f ]

= EX

[
EY |X∼η̃(X)

[
ψmlog(Y,

̂̃
f(X))

]
− inf

u∈Rn−1
EY |X∼η̃(X)

[
ψmlog(Y,u)

]]
= EX

[
EY |X∼η̃(X)

[
ψmlog(Y,

̂̃
f(X))− ψmlog(Y,λmlog(η̃(X)))

]]
(by definition of strongly proper composite multiclass loss)

≥ EX

[1
2

∥∥λ−1
mlog(

̂̃
f(X))− η̃(X)

∥∥2
1

]
(by Lemma 4.2)

=
1

2
EX

[∥∥̂̃η(X)− η̃(X)
∥∥2
1

]
(4.6)

Combining Eqs. (4.5, 4.6), and applying Jensen’s inequality (to the convex function x 7→ x2)

establishes the result.

4.6. Estimating the Noise Matrix C

In settings where the noise matrix C is not known in advance, one may need to estimate C from the

noisy training examples themselves. Most previous work on estimating the noise matrix assumes

the existence of ‘anchor points’ (definition provided below), and relies on estimating these points

accurately.13 In particular, Menon et al. (2015) provided a method for estimating C using anchor

points in the case of binary labels; Patrini et al. (2017) extended it to the multiclass setting, and

later, Yao et al. (2020) proposed another noise estimation method also based on anchor points.

Unfortunately, however, we show below that these methods do not work correctly for all noise

matrices C. In particular, in Section 4.6.1, we point out an error in the approach used to compute

anchor points in the noise estimation methods of Patrini et al. and Yao et al., and provide sufficient

and necessary conditions on C under which these methods do work correctly. Of course, when C

is unknown, we may not know whether it satisfies these conditions, and so we may not be able to

verify whether the estimation is correct. Building on the intuition developed from our analysis, in

Section 4.6.2 we propose an iterative noise estimation heuristic that essentially tries to improve the

estimation of anchor points, and that can be applied for any unknown C; while it is not guaranteed
13There is also some recent work that aims to estimate C without identifying anchor points (Xia et al., 2019).
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to converge or recover a correct estimate, in our experiments, it generally performs as well as, or

improves upon, the methods of Patrini et al. and Yao et al. It remains an open question whether

general noise matrices C can be estimated reliably using anchor points.

4.6.1. Conditions for Correctness of Noise Estimation Methods Based on Anchor Points

The methods of Patrini et al. (2017) and Yao et al. (2020) make the following assumption:

(A) (Anchor points) Under the clean distribution D = (µ,η), for every y ∈ Y, there is a ‘perfect’

example x̄y ∈ X of class y (called an anchor point of class y) with marginal µ(x̄y) > 0 and

η(x̄y) = ey.

Under this assumption, Patrini et al. observe that, for all y, ỹ ∈ Y,

η̃ỹ(x̄
y) =

(
C⊤η(x̄y)

)
ỹ
=
(
C⊤ey)ỹ = γy,ỹ .

Therefore, if one can identify such perfect examples/anchor points x̄y, and if the class probability

estimates ̂̃η(x) are accurate, then one can estimate the noise rates via

γ̂y,ỹ = ̂̃ηỹ(x̄y) ∀y, ỹ ∈ [n] .

As discussed previously, provided one has a sufficiently large training sample, accurate class proba-

bility estimates can be formed by minimizing a strongly proper composite surrogate over a suitably

rich function class. The main step that is needed, therefore, is to identify the ‘perfect’ examples/an-

chor points x̄y above.

Patrini et al. suggest identifying such anchor points by first estimating a CPE model ̂̃η, and then

taking a large collection of available instances Xtrain ⊂ X drawn IID from the marginal µ (these

could just be the training instances in S̃ or could include other unlabeled instances as well), and

estimating anchor points according to

̂̄xy ∈ argmax
x∈Xtrain

̂̃ηy(x)
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However, note that these anchor points should be chosen to maximize the true class probability

ηy(x), not the noisy class probability η̃y(x)! Therefore, the above method (also used by Yao et al.,

according to footnote 2 in their paper) is in general incorrect. Of course, we do have a relation

between η and η̃ (Eq. (4.1)), but that relation involves C; without knowledge of C, we cannot in

general use a noisy CPE model ̂̃η to find instances maximizing ηy(x).

Nevertheless, surprisingly, Patrini et al. and Yao et al. did report some successful experiments with

their methods. On investigating further, we identified a sufficient condition on the noise matrix C

under which argmaxx η̃y(x) = argmaxx ηy(x), and therefore, under which the above approach for

estimating anchor points does work correctly, as well as a related necessary condition failing which

the approach fails:

Theorem 4.6. Suppose assumption (A) above holds.

1. If the noise matrix C = [γy,ỹ] satisfies the sufficient condition

γỹ,ỹ > γy,ỹ ∀y ̸= ỹ ,

then provided that Xtrain is a large enough sample (drawn IID from µ) and the noisy class

probabilities η̃(x) are modeled accurately, the anchor point estimation method of Patrini et al.

(2017) described above works correctly.

2. If C fails to satisfy the necessary condition

γỹ,ỹ ≥ γy,ỹ ∀y ̸= ỹ ,

then the anchor point estimation method of Patrini et al. (2017) described above fails.

Proof. Part 1 (Sufficiency).
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Suppose C satisfies the given sufficient condition, i.e. that

γỹ,ỹ > γy,ỹ ∀y ̸= ỹ .

We will show that

argmax
x

ηy(x) = argmax
x

η̃y(x) ∀y ∈ [n] ;

the claim will then follow.

Fix any class y ∈ [n].

First, suppose x′ ∈ argmaxx ηy(x). Then by assumption (A), it must be the case that ηy(x′) = 1,

i.e. that η(x′) = ey. This gives

η̃y(x
′) = (C⊤η(x′))y = (C⊤ey)y = γy,y .

Now for any x ∈ X , we have

η̃y(x) = (C⊤η(x))y =
n∑

y′=1

γy′,yηy′(x) ≤
n∑

y′=1

γy,yηy′(x) = γy,y = η̃y(x
′) .

Thus x′ ∈ argmaxx η̃y(x). This establishes argmaxx ηy(x) ⊆ argmaxx η̃y(x).

Conversely, suppose x′ ∈ argmaxx η̃y(x) = argmaxx(C
⊤η(x))y. This means

n∑
y′=1

γy′,yηy′(x
′) ≥

n∑
y′=1

γy′,yηy′(x) ∀x ∈ X .

By assumption (A), there exists x̄y ∈ X such that η(x̄y) = ey. Applying the above inequality to

x = x̄y, we have
n∑

y′=1

γy′,yηy′(x
′) ≥

n∑
y′=1

γy′,yηy′(x̄
y) = γy,y .
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Moreover, we have
n∑

y′=1

γy′,yηy′(x
′) ≤ γy,y .

Combining the above two inequalities, we get

n∑
y′=1

γy′,yηy′(x
′) = γy,y .

Since γy′,y < γy,y for all y′ ̸= y, this means we must have η(x′) = ey. Thus, x′ ∈ argmaxx ηy(x).

This establishes argmaxx η̃y(x) ⊆ argmaxx ηy(x).

Part 2 (Necessity).

Suppose that C fails to satisfy the given necessary condition, i.e. that there exist y ̸= ỹ such that

γỹ,ỹ < γy,ỹ .

We will show that argmaxx ηỹ(x) ̸= argmaxx η̃ỹ(x).

We give a proof by contradiction. In particular, let if possible argmaxx ηỹ(x) = argmaxx η̃ỹ(x) =

argmaxx(C
⊤η(x))ỹ.

By assumption (A), there exists x̄ỹ ∈ X such that η(x̄ỹ) = eỹ, so this means x̄ỹ ∈ argmaxx ηỹ(x) =

argmaxx η̃ỹ(x) = argmaxx(C
⊤η(x))ỹ. This means

γỹ,ỹ =
n∑

y′=1

γy′,ỹηy′(x̄
ỹ) ≥

n∑
y′=1

γy′,ỹηy′(x) ∀x ∈ X .

But by assumption (A), we can also find x̄y ∈ X such that η(x̄y) = ey. Applying the above

inequality to x = x̄y then gives

γỹ,ỹ ≥
n∑

y′=1

γy′,ỹηy′(x̄
y) = γy,ỹ ,

contradicting our assumption. Therefore, we must have argmaxx ηỹ(x) ̸= argmaxx η̃ỹ(x).
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It is worth noting that the noise matrices in Patrini et al.’s study that were estimated correctly by

their method all satisfy the sufficient condition above; for the one noise matrix in their study which

did not satisfy the necessary condition above, their estimation method failed (see Section 4.7.2

for details). Similarly, all the noise matrices considered in Yao et al.’s study satisfy the sufficient

condition above; in our experiments, for noise matrices that fail to satisfy the necessary condition

above, Yao et al.’s method also fails.

We also note that, in Patrini et al.’s study, after learning a noisy CPE model ̂̃η and estimating C, a

different learning algorithm that minimizes a noise-corrected loss was then used to learn a classifier

ĥ. In our case, after learning ̂̃η and estimating C, we can simply output the plug-in classifier

ĥ = pluginL
Ĉ
◦ ̂̃η, with no additional training required.

4.6.2. An Iterative Noise Estimation Heuristic

Based on the discussion above, we propose an alternative, iterative noise estimation heuristic that

aims to improve anchor point estimation, wherein we start with an estimate of Ĉ = I (no noise),

and iteratively feed in the current estimate into a corrected version of Patrini et al.’s method to

obtain an updated estimate. The approach is shown in Algorithm 4.3. The first iteration simply

corresponds to Patrini et al.’s original method; therefore, if C satisfies the condition of Theorem 4.6,

then the first iteration produces an accurate estimate. Unfortunately, the method is not guaranteed

to converge or to produce an accurate estimate in general; nevertheless, in our experiments, we find

this method performs as well as, or better than, the methods of Patrini et al. and Yao et al. It

remains an open question whether general noise matrices C can be estimated reliably using anchor

points.

4.7. Experiments

We conducted two sets of experiments to evaluate our noise-corrected plug-in algorithm. In the

first set of experiments, we generated synthetic data, and tested the sample complexity behavior

of our algorithm, using linear models, for a variety of different noise matrices C with increasing

values of ∥C−1∥2. In the second set of experiments, we compared the performance of our noise

correction method with those of van Rooyen and Williamson (2017) and Patrini et al. (2017), all
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Algorithm 4.3 Iterative Noise Estimation Heuristic
1: Inputs:

(1) CPE model ̂̃η : X→∆n (for noisy distribution)
(2) Xtrain ⊂ X
(3) Maximum number of iterations T

2: Initialize: Ĉ(1) =
[
γ̂
(1)
y,ỹ

]
← I

3: For t = 1, . . . , T :
4: ∀y ∈ Y : ̂̄xy ← argmax

x∈Xtrain

((
(Ĉ(t))⊤

)−1 ̂̃η(x))
y

5: ∀y, ỹ ∈ Y : γ̂
(t+1)
y,ỹ ← ̂̃ηỹ(̂̄xy)

6: diff(t) ← ∥Ĉ(t+1) − Ĉ(t)∥F
7: Output: Ĉ(t∗), where t∗ = argmin

t∈[T ]
diff(t)

using neural network models, on two real benchmark data sets; in this set of experiments, we used

noise matrices C constructed for these data sets by Patrini et al. (2017), closely following their

experimental settings. We also compared the performance of our noise estimation method with

those of Patrini et al. (2017) and Yao et al. (2020). In all cases, we used the multiclass logistic loss

(unmodified in our case, and modified as needed by each of the other algorithms). We summarize

both sets of experiments below. In all cases, training labels were flipped randomly according to the

prescribed (invertible) noise matrix C; performance of the learned models was then measured on a

clean test set.

4.7.1. Synthetic Data: Sample Complexity Behavior

In order to test the sample complexity behavior of our algorithm, we generated synthetic data from

a known distribution (from which we could draw increasingly large training samples as needed).

Specifically, we constructed a 5-class problem over a 10-dimensional instance space X = [−1, 1]10

as follows. Instances x were generated uniformly at random from X . The class probability function

η : X→∆5 was set to ηy(x) =
exp(w⊤

y x)∑5
y′=1 exp(w

⊤
y′x)

for some fixed weight vectors w1, . . . ,w5 ∈ R10 (the

entries of the weight vectors were drawn IID from N (0, 1) and then scaled so that ∥wy∥2 = 1).

Given an instance x, a clean label y was drawn randomly according to η(x). For any prescribed

(row-stochastic) noise matrix C, training labels y were then stochastically flipped to a noisy label

ỹ according to the probabilities in the y-th row of C.
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We tested the sample complexity behavior of our algorithm, implemented to minimize the multiclass

logistic loss over linear models, for a variety of noise matrices C with increasing values of ∥C−1∥2.1415

We ran the algorithm on increasingly large (noisy) training samples (up to 40,000 examples) and

measured the performance on a large test set of 10,000 (clean) examples. The results are shown in

Figure 4.3: The left plot in the figure shows results for the 0-1 loss (shown as accuracy); the right

plot shows results for a different target loss, specifically, the ordinal regression loss Lord defined as

ℓord
y,ŷ = |ŷ − y|.16 We see that, as suggested by our regret transfer bound, as ∥C−1∥2 increases (i.e.

as the matrix C becomes closer to being singular), the sample size required to achieve a given level

of performance generally increases.17

4.7.2. Real Data: Comparison with Other Algorithms

We conducted experiments on several real data sets. Here we describe experiments on two bench-

mark data sets, MNIST (Lecun et al., 1998) and CIFAR10 (Krizhevsky and Hinton, 2009), where

we compared our algorithm with the unbiased estimator method of van Rooyen and Williamson

(2017) and the forward method of Patrini et al. (2017), all using neural network models, and also

tested the incorporation of noise estimation methods. These experiments were designed to closely

mimic experiments of Patrini et al. (2017); we used code provided by the authors18 and kept the

neural network architectures and all parameters as given.19

14Although in Section 4.5.3, we provided an improve regret transfer bound for the multiclass logistic loss that
depends on the noise matrix C through ∥(C⊤)−1∥1 instead of ∥C−1∥2, here we are only comparing the relative
magnitude, and both norms can serve this purpose. The detailed descriptions here correspond to our conference
paper (Zhang et al., 2021) on which this chapter is based.

15The implementation was in PyTorch (Paszke et al., 2019), and used the AdamW optimizer. The optimizer was
run for 50 epochs over the training sample; the learning rate parameter was initially set to 0.01 and was halved at
the end of every 5 epochs.

16Following Natarajan et al. (2013), for each noise matrix, we repeated each experiment 3 times with independent
random corruptions of the training set using the same noise matrix; our results give the mean performance over the
3 runs.

17We note that for the synthetic data distribution described above, although the clean class probabilities η(x)
take the form of a softmax-of-linear model, the noisy class probabilities η̃(x) are not of this form. Therefore, even
though the plots in Figure 4.3 seem to suggest our algorithm converges to the Bayes optimal performance, strictly
speaking, this is not the case: The algorithm does appear to have learned a fairly accurate model for the noisy
class probabilities η̃(x), but it cannot express them exactly; in order to truly model them exactly, we would need to
implement the algorithm using a richer function class. (We do not do this here since the difference in performance
would be unnoticeable. We use richer function classes in the experiments with real data, where we employ neural
network models.)

18https://github.com/giorgiop/loss-correction
19We note that for some parameters (e.g. batch size), there is a discrepancy between the settings used in the code

and those mentioned in the paper; we used the settings in the code.
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Figure 4.3: Sample complexity behavior of our algorithm on synthetic 5-class data for a variety of
noise matrices C with increasing values of ∥C−1∥2. Left: 0-1 loss (shown as accuracy). Right:
Ordinal regression loss Lord. As suggested by our regret bounds, as ∥C−1∥2 increases, the sample
size needed to reach a given level of performance generally increases. See Section 4.7.1 for details.

Table 4.1: Details of MNIST and CIFAR10 data sets.

Data set # train # test # classes # features
(n) (d)

MNIST 60,000 10,000 10 784
CIFAR10 50,000 10,000 10 3072

Both MNIST and CIFAR10 are 10-class data sets (see Table 4.1 for details of the data sets). The

experiments used 0-1 loss (measured as accuracy). In both cases, experiments were conducted with

clean data (no noise) and with 6 noise matrices C. One of these, Csym(0.2), was a symmetric noise

matrix with the following structure: all diagonal entries γyy were set to 1−γ, where γ = 0.2; all off-

diagonal entries were set to γ
n−1 (here n = 10). For such symmetric noise matrices (with γ < n−1

n )

and 0-1 loss, it is known that no noise correction is needed, and that standard algorithms designed to

learn a good classifier for 0-1 loss (on the noisy data) work correctly (van Rooyen and Williamson,

2017; Ghosh et al., 2017). The other 5 noise matrices were asymmetric, and were artificially designed

by Patrini et al. (2017) to simulate some of the possible structures of real label noise, where a label

might be replaced with some probability γ by some other similar label, for example, Cat → Dog.

For each of MNIST and CIFAR10, Patrini et al. specified a set of such ‘label noise’ transitions

to create specific parametric noise matrices CMNIST(γ) and CCIFAR10(γ), and instantiated these
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with γ = 0.2, 0.6; we additionally included γ = 0.45, 0.55, 0.65. The noise matrices Csym(0.2) and

CMNIST(γ), CCIFAR10(γ) for γ < 0.5 all satisfy the sufficient condition of Theorem 4.6; the matrices

CMNIST(γ), CCIFAR10(γ) for γ > 0.5 fail to satisfy the necessary condition.

For MNIST, the asymmetric noise matrix CMNIST(γ) includes the following label noise transitions:

2→ 7, 3→ 8, 5↔ 6, 7→ 1. Following Patrini et al. (2017), features were normalized to [0, 1], and

two fully connected hidden layers of size 128 were trained, with ReLU activation and dropout rate

0.2.20

For CIFAR10, the asymmetric noise matrix CCIFAR10(γ) includes the following label noise transitions:

Truck→ Automobile, Bird→ Airplane, Deer→ Horse, Cat↔ Dog. Again following Patrini et al.

(2017), per-pixel mean subtraction and data augmentation were performed, and a 14-layer residual

network (ResNet) (He et al., 2016) was trained.21

The results are summarized in Tables 4.2 and 4.3, respectively. For each algorithm, we implemented

four versions: one with the noise matrix C known, and the other three with the noise matrix

estimated using either the method of Patrini et al. (2017) (denoted ĈPatrini), the Dual T method of

Yao et al. (2020) (ĈDT), or our iterative noise estimation heuristic (Ĉiter).22 Several observations

are in order. First, for the symmetric noise matrix Csym(0.2), standard logistic regression with no

noise correction does well as expected; for heavy asymmetric noise (CMNIST(γ) and CCIFAR10(γ)

for γ > 0.5), standard logistic regression without noise correction does not do well. Second, our

noise-corrected plug-in method is comparable to the other noise-corrected methods, even though

it requires no change to the training process. Third, our iterative noise estimation heuristic either

performs similarly to the noise estimation methods of Patrini et al. and Yao et al., or in some cases

(particularly CMNIST(γ) for γ > 0.5) significantly outperforms their methods. Finally, for the noise

matrices that satisfy the sufficient condition of Theorem 4.6, all three noise estimation methods

perform well; for the noise matrices that fail to satisfy the necessary condition, no method achieves
20Batch size was 32. AdaGrad (Duchi et al., 2010) was run for 40 epochs with default parameters.
21Batch size was 32. SGD was run for 120 epochs with momentum 0.9 and learning rate set to 0.1 initially and

divided by 10 after 40 and 80 epochs; weight decay was 10−4.
22Our iterative noise estimation heuristic was implemented with maximum number of iterations T set to 1000.
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perfect estimation.

It is worth pointing out again that all three noise estimation methods (the methods of Patrini et al.

(2017) and Yao et al. (2020), and our iterative method) make use of a noisy CPE model ̂̃η(x) learned

from the noisy training data. Our noise-corrected plug-in algorithm makes use of this noisy CPE

model directly, simply applying a noise-corrected plug-in step at prediction time, and does not need

any further re-training; on the other hand, the other two noise correction methods above both need

to further minimize a noise-corrected loss on the noisy data in order to learn a classifier.

4.8. Conclusion

We have provided a simple noise-corrected plug-in method for general multiclass class-conditional

label noise (CCN) that requires no change to the training process. Noise correction takes place

at prediction time, and after a one-time matrix inversion and multiplication step, requires O(n2)

time per prediction, where n is the number of classes. For general loss matrices L, this is the same

computational cost that is needed for standard plug-in methods; for the 0-1 loss, it is a factor of n

larger than the standard cost (for small to moderate n, this may still be a smaller cost overall as

compared to the cost of modifying the training process). We have also provided quantitative regret

transfer bounds for our method that quantify the effect of learning from noisy labels, as well as an

iterative noise estimation heuristic.

One possible issue to be careful about is that accurate estimation of noisy class probabilities can

potentially be challenging due to their typically higher variance (particularly with neural networks,

which often exhibit high calibration errors (Guo et al., 2017; Rahimi et al., 2020)) – while we did

not find this to be a significant concern in our experiments, it could possibly be an issue for certain

types of data sets or noise. It remains an open question whether general noise matrices C can be

estimated reliably using anchor points.
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Ĉ

it
er

92
.7

3
(0

.0
7)

91
.7

6
(0

.0
8)

92
.0

0
(0

.0
7)

∗ 8
9.

51
∗

(0
.1

9)
74

.9
5

(0
.2

2)
71

.2
4

(3
.5

2)
70

.9
8

(3
.4

4)
Fo

rw
ar

d,
Ĉ
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CHAPTER 5

COMPLEX LEARNING SETTING: MULTICLASS LEARNING FROM NOISY LABELS

USING WEIGHTED LOSSES

Complex Label Space
Complex Learning
Setting

Complex Performance Measure

⋆ This work

Figure 5.1: Position of Multiclass Learning from Noisy Labels Using Weighted Losses in the thesis.

This work was done in collaboration with Sheng Gao and Hua Wang, who were both Ph.D. students

at Penn Wharton at the time of this project, under the supervision of Professor Shivani Agarwal.

The three student authors contributed equally to this project. In particular, I participated in

deriving theoretical results, explicitly showed that the multiclass weighted loss method recovers the

binary weighted loss method as a special case, and connected the multiclass weighted loss method

to some existing work in multiclass learning with a reject option.

In this chapter, we continue our discussion of multiclass learning from noisy labels. We show how

to generalize the weighted loss method from binary to multiclass, and how to use the method to

design consistent algorithms for problems in multiclass learning from noisy labels and multiclass

learning with a reject option.
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5.1. Introduction

5.1.1. Background and Our Contributions

In a famous study of learning from noisy labels under CCN in binary classification, Natarajan et al.

(2013) proposed two methods: the method of unbiased estimator and the method of weighted loss

(termed as method of label-dependent costs in their paper). Later, the unbiased estimator approach

was extended to multiclass classification (van Rooyen and Williamson, 2017) to correct multiclass

label noise. Meanwhile, Patrini et al. (2017) proposed the forward and backward approaches for

learning from noisy labels under CCN in multiclass classification; it turns out the backward method

is equivalent to the unbiased estimator method. The weighted loss method of Natarajan et al.

(2013), which essentially minimizes a weighted surrogate loss where the weights are designed to

correct label noise, however, has not yet been extended to multiclass classification; indeed, even

in the standard (non-noisy) multiclass setting, it is not well-understood how to design suitable

weighted surrogate losses for general cost-sensitive learning. We note that all the noise-correction

methods above involve modifying the surrogate loss used in the training process. In Chapter 4, we

have described our published work (Zhang et al., 2021) in which we have proposed a simple plug-in

method to learn from noisy labels that does not modify the surrogate loss. It has some connections

with the weighted loss method of Natarajan et al. (2013). Still, it remains unclear how to generalize

the weighted loss method to multiclass classification for correcting label noise. Figure 5.2 depicts

the relationships between these works and this work.

The weighted loss method for correcting label noise in binary classification not only works for

smooth surrogate losses, but also works for the margin-based surrogate losses. In addition, it

preserves convexity if the underlying surrogate loss is convex. This is in contrast to the method

of unbiased estimator and the forward method: even if the underlying surrogate losses are convex,

they may not preserve the convexity. For the method of unbiased estimator in binary classification,

Natarajan et al. (2013) provided a simple condition to ensure convexity. When extending this

method to multiclass classification, van Rooyen and Williamson (2017) generalized the condition in

Natarajan et al. (2013) and showed that a large and useful class of loss functions remains convex
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Figure 5.2: Relationships between existing works on learning from noisy labels under CCN in the
literature and this work (highlighted in red).

100



after noise-correction. For the forward method, Patrini et al. (2017) did not discuss convexity, and

the question is not trivial. The convexity of the forward corrected loss remains unclear.

Therefore, if it is possible to extend the weighted loss method to multiclass classification for correct-

ing label noise, it is expected that the multiclass versions of the weighted loss should also work for

the multiclass versions of margin-based losses (such as Crammer-Singer SVM (Crammer and Singer,

2001) and Weston-Watkins SVM (Weston and Watkins, 1999)), and preserve convexity when the

underlying losses are convex.

The prevalence of multiclass problems across numerous domains highlights the importance of in-

vestigating the generalization of the weighted loss method to multiclass classification for correcting

label noise. By achieving this generalization, it would be possible to develop a new family of al-

gorithms specifically designed for learning from noisy labels in multiclass settings. This would not

only provide practitioners with a broader range of tools to tackle noisy label problems, but also

potentially improve the performance and robustness of existing methods.

In addition to the potential for creating novel noise-corrected algorithms, generalizing the weighted

loss method to multiclass classification for correcting label noise could also lead to advancements in

the broader field of multiclass classification. In particular, the weighted loss method of Natarajan et al.

(2013) essentially involves techniques used for solving cost-sensitive learning problems in the stan-

dard (non-noisy) binary setting, and those problems have been well-studied (Scott, 2012). However,

it remains unclear how to design suitable weighted surrogate losses for general cost-sensitive learning

in the standard (non-noisy) multiclass setting, and how to design weights to correct label noise in

the presence of noisy labels.

In this work, we close these open questions. Specifically, we first show how to design a surrogate

loss for a general multiclass loss L by taking a weighted combination of surrogate losses for the

standard 0-1 loss. Our method works with both smooth surrogate losses and non-smooth surrogate

losses, allowing for margin-based losses such as those used in various formulations of multiclass

support vector type algorithms. In addition, the proposed method preserves the convexity of the
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underlying surrogate loss, a desirable property to allow for efficient optimization. We also provide

theoretical results to show the proposed method is Bayes consistent, and provide an estimation

error bound. Then, we apply the proposed method to extend the weighted loss method proposed

in Natarajan et al. (2013) for binary learning from noisy labels to multiclass learning from noisy

labels; we achieve this by choosing appropriate weights designed to correct label noise. Finally, we

also apply the proposed method to solve problems in multiclass learning with a reject option; in

doing so, we recover several results of Cao et al. (2022). Figure 5.3 depicts our contributions.

Section 5.3: Weighted
surrogate loss for multiclass
cost-sensitive learning in the
standard (non-noisy) setting

Section 5.5: Weighted
loss method for multiclass

learning with a reject option
(recover Cao et al. (2022))

Section 5.4: Weighted loss
method for multiclass learning

from noisy labels (extend
Natarajan et al. (2013))

Apply toApply to

Figure 5.3: Our contributions.

Methodology. We study the problem by utilizing current studies on learning from noisy labels and

the theory of convex calibrated surrogates. Convex calibrated surrogates are a class of surrogate

loss functions used in machine learning, particularly in classification problems. They are designed

to approximate the target performance measures (typically discrete losses) while retaining desirable

properties such as convexity and calibration. The notion of calibration ensures that minimizing

the surrogate loss can (in the limit of a sufficiently large training sample) recover a Bayes optimal

model for the target discrete loss. In the context of learning from noisy labels, we want to ensure

that minimizing the surrogate loss over the noisy training sample can (in the limit of a sufficiently

large training sample) recover a Bayes optimal model for the target discrete loss under the clean

distribution. In particular, we build solutions based on the following works.
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• Natarajan et al. (2013); van Rooyen and Williamson (2017); Patrini et al. (2017); Zhang et al.

(2021) proposed and analyzed different consistent algorithms to learn from noisy labels under

the CCN model in both binary and multiclass settings.

• (Zhang, 2004a,b; Bartlett et al., 2006; Tewari and Bartlett, 2007; Steinwart, 2007;

Ramaswamy et al., 2014; Ramaswamy and Agarwal, 2016) studied calibrated surrogate losses

in binary and multiclass classification.

• Other works that utilized the theory of convex calibration surrogates to design algorithms

for various binary/multiclass learning settings (other than learning from noisy labels) are

also helpful. For example, Ramaswamy et al. (2018); Cao et al. (2022) studied classification

with rejection settings in which a classifier refrains from making a prediction to avoid critical

misclassification when encountering examples that are difficult to classify.

5.1.2. Notation

For an integer n, we denote by [n] the set of integers {1, ..., n}, and by ∆n the probability simplex

{p ∈ Rn+ :
∑n

y=1 py = 1}. For a vector a, we denote by ∥a∥2 the L2 norm of a. For a matrix A, we

denote by ∥A∥F the Frobenius norm of A, by ∥A∥p the induced p-norm of A (∥A∥2 is the largest

singular value of A), and by ay the y-th column vector of A. We use ey to denote a standard basis

vector with y-th element 1. 1(·) is the indicator function.

5.1.3. Related Work

Noise models in learning from noisy labels. In learning from noisy labels, several noise mod-

els have been proposed and studied. In random classification noise (RCN) model, each label is

flipped with a fixed probability ρ ∈ [0, 12) (Angluin and Laird, 1987; Bylander, 1994; Kearns, 1998;

Cesa-Bianchi et al., 1999; van Rooyen et al., 2015). A more general noise model is class-conditional

noise (CCN), which says noisy labels are generated according to a fixed conditional distribution

given the true class (Natarajan et al., 2013; Scott et al., 2013; Menon et al., 2015; Liu and Tao,

2016; van Rooyen and Williamson, 2017; Patrini et al., 2017). However, both RCN and CCN de-

pend only on the labels. The most general label noise, instance-dependent and label-dependent noise
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(ILN), also depends on the instance (Menon et al., 2018; Cheng et al., 2020). In multi-label learn-

ing from noisy labels, independent flipping noise (IFN) model is commonly used, in which each

label (tag) is independently flipped from active to non-active (or vice versa) with some probability

(Kumar et al., 2020; Zhao and Gomes, 2021; Xie and Huang, 2023). Below we briefly discuss some

developments in these fields and focus on works that are the most related to our study. For de-

tailed surveys about learning from noisy labels, we refer the reader to Frénay and Verleysen (2014);

Song et al. (2023); Han et al. (2020).

Binary learning from noisy labels. The initial studies focused on the RCN model and PAC-

style guarantees (Angluin and Laird, 1987; Bylander, 1994; Aslam and Decatur, 1996; Kearns, 1998;

Blum and Mitchell, 1998; Cesa-Bianchi et al., 1999). Some recent studies concerned about designing

surrogate losses robust to RCN (Long and Servedio, 2010; van Rooyen et al., 2015; Ghosh et al.,

2015). It was also mentioned in Menon et al. (2015) that for RCN, the noise rate is not needed for

consistent predictions.

For CCN, Natarajan et al. (2013) and Menon et al. (2015) are the most related studies to ours and

they assumed CCN is known. Natarajan et al. (2013) showed two ways of correcting surrogate

losses by the noise rates so that minimizing the modified surrogates with noisy labels is consistent

w.r.t. the true distribution. Menon et al. (2015) proposed to learn class probability estimation

(CPE) models from noisy labels and then to apply a threshold depending on the noise rates. Other

methods dealing with CCN include Stempfel and Ralaivola (2009); Scott et al. (2013); Scott (2015);

Liu and Tao (2016); Patrini et al. (2016); Liu and Guo (2020). There are also results when noise

rates are not known. Scott et al. (2013); Scott (2015); Menon et al. (2015); Liu and Tao (2016)

proposed consistent estimators for noise rates. Liu and Guo (2020) used peer loss fcuntions.

For ILN, Menon et al. (2018) studied consistency properties with instance-dependent (but label-

independent) noise, and a subclass of general ILN models which they termed as boundary consistent

noise model. Cheng et al. (2020) studied bounded ILN models and proposed to use ‘distilled’

examples to learn from such noise.
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Multiclass learning from noisy labels. Symmetric CCN here is the multiclass version of RCN

in binary classification. Ghosh et al. (2017) proved a sufficient condition for a loss function to be

robust to symmetric CCN. Wang et al. (2018) proposed an importance re-weighting method for

symmetric CCN.

In an elegant study, van Rooyen and Williamson (2017) studied in detail learning from known CCN

for multiclass problems. They generalized the unbiased estimator method in Natarajan et al. (2013)

to correct surrogate losses using noise rates in the multiclass setting and provided upper and lower

risk bounds. They also studied loss functions that are invariant to CCN and showed a method to

construct such losses. Patrini et al. (2017) proposed two ways of modifying losses by the known

CCN: forward and backward, and they showed the minimizer of the modified loss under the noisy

distribution coincide with the minimizer of the original loss under the clean distribution. They also

extended results in Menon et al. (2015) to estimate the noise when it is unknown. Zhang et al.

(2021) proposed a simple plug-in method to learn from noisy labels that does not modify the

surrogate loss.

Convex calibrated surrogates. Convex surrogate losses are frequently used in machine learn-

ing to design computationally efficient learning algorithms. The notion of calibrated surrogate

losses, which ensures that minimizing the surrogate loss can (in the limit of sufficient data) re-

cover a Bayes optimal model for the target discrete loss, was initially studied in the context of

binary classification (Bartlett et al., 2006; Zhang, 2004a) and multiclass 0-1 classification (Zhang,

2004b; Tewari and Bartlett, 2007). In recent years, calibrated surrogates have been designed for

several more complex learning problems, including general multiclass problems and certain types of

subset ranking and multi-label problems (Steinwart, 2007; Duchi et al., 2010; Gao and Zhou, 2013;

Ramaswamy et al., 2013, 2014, 2015).

Classification with a reject option. In some binary and multiclass learning settings, a

classifier is required to refrain from making a prediction to avoid costly misclassification errors

when encountering examples that are difficult to classify (i.e., when the confidence of classi-

fication of an example is low). Such settings are termed ‘classification with a reject option’,
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and have been studied in standard binary and multiclass classification problems (Chow, 1970;

Yuan and Wegkamp, 2010; El-Yaniv and Wiener, 2010; Bartlett and Wegkamp, 2008; Cortes et al.,

2016a,b; Geifman and El-Yaniv, 2017; Ramaswamy et al., 2018; Ni et al., 2019; Shen et al., 2020;

Charoenphakdee et al., 2021; Cao et al., 2022).

5.1.4. Organization

Section 5.2 gives preliminaries and background. Section 5.3 describes our weighted surrogate loss

for multiclass cost-sensitive learning settings. Section 5.4 applies our weighted surrogate loss to mul-

ticlass learning from noisy labels, extending the weighted loss method proposed in Natarajan et al.

(2013) for binary learning from noisy labels to multiclass learning from noisy labels. Section 5.5

applies our weighted surrogate loss to multiclass learning with a reject option, recovering several

results of Cao et al. (2022). Section 5.6 concludes this work.

5.2. Preliminaries and Background

5.2.1. Problem Setup: Multiclass Learning from Noisy Labels

We start with some necessary notations and definitions.

The problem of (multiclass) learning from noisy labels can be described as follows. There is an

instance space X , and a set of n class labels Y, which we will take without loss of generality

to be Y = [n]. There is a (unknown) joint probability distribution D on X × Y from which

labeled examples (X,Y ) are drawn. In the standard (non-noisy) supervised learning setting, the

learner would be given training examples drawn directly from D. When learning from noisy labels,

however, the learner does not get clean labels Y ; instead, the learner sees noisy examples (X, Ỹ ),

where Ỹ denotes a noisy version of Y . In particular, the learner receives a noisy training sample

S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X ×Y)m, and the goal is to learn a classifier h : X→Y that performs

well with respect to the clean distribution D.

We consider here the class-conditional noise (CCN) model (Natarajan et al., 2013;

van Rooyen and Williamson, 2017), wherein a label y is randomly flipped to a label ỹ with

some probability γy,ỹ that depends on y and ỹ. In particular, the CCN model is characterized by a
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row-stochastic noise matrix C ∈ [0, 1]n×n with entries cy,ỹ, such that for each y, ỹ ∈ [n],

cy,ỹ = P(Ỹ = ỹ |Y = y) = γy,ỹ . (5.1)

The noisy training examples seen by the learner can therefore be viewed as being drawn i.i.d. from

a ‘noisy’ distribution D̃ on X ×Y, wherein an example (X,Y ) is first drawn randomly according to

D, and then noise is injected according to the noise matrix C to generate (X, Ỹ ).

Learning goal. Given a noisy training sample S̃ drawn according to the noisy distribution D̃ as

above, the goal of the learner is to learn a classifier h : X→Y that performs well under the clean

distribution D. To measure performance, we consider a general multiclass loss matrix L ∈ Rn×n,

with entries ℓy,ŷ = ℓ(ŷ, y) indicating the loss incurred on predicting ŷ when the true label is y (the

0-1 loss L0-1 with ℓ0-1
y,ŷ = 1(ŷ ̸= y) is a special case). The performance of the classifier h is then

measured by the L-generalization error (risk for L) under D:

erLD[h] = E(X,Y )∼D[ℓ(h(X), Y )] . (5.2)

The Bayes L-error (Bayes risk for L) underD is then the lowest possible value of the L-generalization

error under D:

erL,∗D = inf
h:X→Y

erLD[h] . (5.3)

The classifier that achieves Bayes L-error is called Bayes optimal classifier for L. The L-regret

(excess risk for L) of a classifier h is the difference between the L-generalization error of h and the

Bayes L-error:

regretLD[h] = erLD[h]− erL,∗D . (5.4)

Our goal is to design consistent algorithms for a given loss L: as the number of (noisy) train-
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ing examples increases, algorithms A can output a classifier whose L-regret converges to zero in

probability:

for all ϵ > 0, P
S̃∼D̃m

(
regretLD[A(S̃)] > ϵ

)
→ 0 as m→∞ . (5.5)

Surrogate losses. Since it is computationally hard to optimize discrete losses L, algorithms often

learn a scoring function f : X → C (where C is usually Rn or Rn−1) by minimizing a surrogate loss

ψ : C × Y → R+, where ψ(u, y) denotes the loss for the score u when the clean label is y. Then a

decoding function decode : C → Y is applied to map scores to labels in Y. For example, in multiclass

classification problems, multiclass logistic regression loss, a composition of cross entropy loss (aka.

log loss) and softmax, is often used as the surrogate loss, and argmax is the corresponding decoding

function. Specifically, given the multiclass scoring function f : X → Rn with f1(x), ..., fn(x) denoting

elements of f(x), the softmax function mapping from Rn to ∆n is defined as:

f(x) 7→


exp(f1(x))/

∑n
i=1 exp(fi(x))

...

exp(fn(x))/
∑n

i=1 exp(fi(x))

 , (5.6)

and the cross entropy function mapping from ∆n × Y to R is defined as

η, y 7→ − log(ηy) . (5.7)

The multiclass logistic regression loss is a mapping from Rn×Y to R, a composition of cross entropy

function and softmax function.

Similar to discrete losses, we can also define risk, Bayes risk, excess risk for a surrogate loss ψ as
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follows:

erψ
D̃
[f ] = E

(X,Ỹ )∼D̃
[
ψ(f(X), Ỹ )

]
, (5.8)

erψ,∗
D̃

= inf
f :X→C

erψ
D̃
[f ] , (5.9)

regretψ
D̃
[f ] = erψ

D̃
[f ]− erψ,∗

D̃
. (5.10)

It is known that minimizing ψ over S̃ is a consistent algorithm for ψ under D̃. A desired property

of a surrogate loss ψ is that consistency w.r.t. ψ under D̃ can be transferred to consistency w.r.t.

the target loss L under D. The notation of calibration exactly characterizes this property (Zhang,

2004a,b; Bartlett et al., 2006; Tewari and Bartlett, 2007; Ramaswamy et al., 2013, 2014). Convexity

in u of a surrogate loss ψ(u, y) is also a typical desired property to have in order to enable fast

optimization.

5.2.2. Weighted Loss Method for Binary Learning from Noisy Labels

In binary classification, CCN is characterized by the following noise rates:

γ+1,−1 = P(Ỹ = −1|Y = +1) =: ρ+1 (5.11)

γ−1,+1 = P(Ỹ = +1|Y = −1) =: ρ−1 (5.12)

with ρ+1 + ρ−1 < 1. Denote by η(x) the clean class probability P(Y = +1|X = x), and η̃(x) the

noisy class probability P(Ỹ = +1|X = x). It is well-known that the Bayes optimal classifier for

0-1loss L0-1 is given by thresholding η(x) at 1/2.

Here, we summarize the weighted loss method of Natarajan et al. (2013) for correcting label noise

in the binary case. The weighted loss method was built from two key observations. First, the Bayes

optimal classifier for L0-1 under the noisy distribution D̃, denoted by h̃∗, uses a threshold other

than 1/2. Second, h̃∗ is the minimizer of a weighted 0-1loss on the noisy distribution D̃. To see the
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first, note that

h̃∗(x) = sign(η̃(x)− 1

2
) = sign(η(x)− 1/2− ρ−1

1− ρ+1 − ρ−1
) . (5.13)

To see the second, for α ∈ (0, 1), define α-weighted 0-1loss as

Uα(t, y) = (1− α)1(y = +1)1(t ≤ 0) + α1(y = −1)1(t > 0) . (5.14)

It can be seen that U 1
2

corresponds to the classical 0-1loss. The following lemma from Scott (2012)

shows that for α-weighted 0-1loss, the minimizer thresholds η(x) at α.

Lemma 5.1 (Scott (2012), Lemma 8 in Natarajan et al. (2013).). Define Uα-risk of f under distri-

bution D as erUα
D [f ] = E(X,Y )∼D

[
Uα(f(X), Y )

]
. Then, f∗α(x) = sign(η(x) − α) minimizes Uα-risk

under D.

Consider the Uα-risk of f under the noisy distribution D̃. Is there an α ∈ (0, 1) so that the

minimizer of Uα-risk under D̃ is the Bayes optimal classifier h∗ for L0-1 under D? If so, one can

simply minimize the empirical Uα-risk over the noisy training sample to find a good classifier. This

question is answered by the following theorem.

Theorem 5.2 (Theorem 9 in Natarajan et al. (2013).). For the choices,

α∗ =
1− ρ+1 + ρ−1

2
, and A =

1− ρ+1 − ρ−1

2
, (5.15)

there exists a constant B, independent of f , such that for all functions f : X → R,

erUα∗

D̃
[f ] = A · erL0-1

D [sign ◦f ] +B . (5.16)

An immediate result following this theorem is that the minimizer of Uα∗-risk under the noisy dis-
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tribution D̃ coincides with the Bayes optimal classifier of ℓ0-1 under the clean distribution D:

argmin
f

erUα∗

D̃
[f ] = argmin

f
erL

0-1

D [sign ◦f ] = x 7→ sign(η(x)− 1

2
) . (5.17)

More generally, for any surrogate loss function ψ with the decomposition

ψ(t, y) = 1(y = +1)ψ(t,+1) + 1(y = −1)ψ(t,−1) , (5.18)

the authors defined ψα as α-weighted ψ, analogous to the 0-1loss case in Eq. (5.14), and defined

the corresponding ψα-risk. The following theorem shows that minimizing ψα-risk w.r.t. the noisy

distribution D̃ leads to the minimization of ℓ0-1-risk w.r.t. the clean distribution D.

Theorem 5.3 (Theorem 11 in Natarajan et al. (2013).). Consider the empirical risk minimization

problem with noisy labels over some function class F :

f̂α∗ = argmin
f∈F

1

m

m∑
i=1

ψα∗(f(xi), ỹi) , (5.19)

where ψα is an α-weighted margin loss function of the form

ψα(t, y) = (1− α)1(y = +1)ϕ(t) + α1(y = −1)ϕ(−t) (5.20)

and ϕ : R→ [0,∞) is a convex loss function with Lipschitz constant L such that it is classification

calibrated (i.e., ϕ′(0) < 0). Then, for the choices α∗ and A in Eq. (5.15), there exists a nonde-

creasing function ζψα∗ with ζψα∗ (0) = 0, such that the following bound holds with probability at least

1− δ:

erL
0-1

D [sign ◦f̂α∗ ]− erL
0-1,∗

D ≤ 1

A
ζψα∗

(
min
f∈F

erψα∗

D̃
[f ]− erψα∗ ,∗

D̃
+ 4L ·Rm(F) + 2

√
log(1/δ)

2m

)
, (5.21)

where Rm(F) is the Rademacher complexity of the function class F (see Definition 5.7).

This theorem shows that minimizing the weighted loss ψα over the noisy training sample leads to
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a consistent algorithm for L0-1 under the clean distribution D. Moreover. From Eq. (5.20), ψα is

convex (in t) if ϕ is convex. Thus, the empirical risk minimization above can be efficiently solved.

Our goal is to extend the above approach to multiclass learning from noisy labels. To do so, we first

study the general question of designing weighted surrogate losses for general multiclass cost-sensitive

learning in the standard (non-noisy) setting.

5.3. Weighted Surrogate Loss for Cost-Sensitive Multiclass Classification

In this section, we focus on the standard (non-noisy) multiclass classification setting and show how

to design a weighted surrogate loss for a general multiclass loss matrix L ∈ Rn×n, using a surrogate

loss ψ : Rn×Y → R+ for L0-1. In addition, we show that if ψ is convex in the first parameter, then

convexity is preserved in the weighted surrogate loss. Finally, we show that if ψ is classification-

calibrated (L0-1-calibrated), then the weighted surrogate loss is L-calibrated. Then, in Section 5.4

and Section 5.5, we will show how to apply weighted surrogate losses to solve problems in multiclass

learning from noisy labels and multiclass learning with a reject option, respectively.

5.3.1. Objective

As mentioned earlier, the weighted loss method of Natarajan et al. (2013) essentially involves tech-

niques used for solving cost-sensitive learning problems in the standard (non-noisy) binary setting

(Lemma 5.1 and Theorem 5.2), and those problems have been well-studied (Scott, 2012). However,

it is still unclear how to design suitable weighted surrogate losses for general cost-sensitive learning

in the standard (non-noisy) multiclass setting. We formulate this problem below.

Specifically, given a general cost-sensitive multiclass loss L and a surrogate loss ψ : Rn × Y → R+

for the multiclass 0-1loss, our goal is to find an M-weighted surrogate loss ψM : Rn × Y → R+ of

the form:

ψM(u, y) =

n∑
i=1

n∑
j=1

mi,j1(y = i)ψ(u, j) (5.22)

for some M ∈ Rn×n. Moreover, when the underlying surrogate loss ψ is classification calibrated

(meaning that minimizing ψ leads to minimization of the 0-1loss), minimizing the weighted loss
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ψM over the training sample should lead to a consistent algorithm for L. In addition, when the

underlying surrogate loss ψ(u, y) is convex in u, the weighted loss ψM(u, y) should be convex in

u as well. Lastly, this method should work for both smooth surrogate losses (e.g., the multiclass

logistic regression loss) and non-smooth surrogate losses (the multiclass versions of margin-based

losses, e.g., Crammer-Singer SVM and Weston-Watkins SVM losses).

5.3.2. Weighted Surrogate Loss

Consider a general cost-sensitive multiclass loss L. Let β ∈ Rn and α > 0. Define

M = β · 1⊤n − αL , (5.23)

where 1n ∈ Rn is a vector with all entries equal to one. Equivalently, we have

my,ŷ = βy − αℓy,ŷ . (5.24)

It is clear that a prediction that minimizes L also maximizes M, and vice versa.

Note that

my,ŷ =

n∑
i=1

n∑
j=1

mi,j1(y = i)1(ŷ = j) =

n∑
j=1

my,j1(ŷ = j) =

n∑
j=1

my,j(1− 1(ŷ ̸= j)) . (5.25)

Now, a prediction maximizing M is equivalent to a prediction minimizing

n∑
j=1

my,j1(ŷ ̸= j)−
n∑
j=1

my,j . (5.26)

It is equivalent to a prediction minimizing

n∑
j=1

my,j1(ŷ ̸= j) . (5.27)

Motivated by the decomposition above, we can similarly define a multiclass weighted loss UM :
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Rn × Y → R+ as

UM(u, y) =
n∑
j=1

my,j1(argmax(u) ̸= j) . (5.28)

This loss is an M-weighted 0-1loss that mimics the behavior of the given cost-sensitive loss L, and

will help us construct M-weighted surrogate losses later. As a special case, it recovers the binary

version in Eq. (5.14), which we show below.

Proposition 5.4. Consider binary cost-sensitive loss L of the form

L =

+1 −1 +1 0 1− α

−1 α 0

.

Let η(x) be the class probability function P(Y = +1|X = x). Then h∗(x) = sign(η(x)−α) is Bayes

optimal for L. Moreover, let

β =

1− α
α

 ,
and define

M =

1− α 1− α

α α

− L =

1− α 0

0 α

 ,
according to Eq. (5.23). Then UM is equivalent to Eq. (5.14).

Proof.

L⊤

 η(x)

1− η(x)

 =

 α− αη(x)

η(x)− αη(x)

 ,
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so it is clear that

min(α− αη(x), η(x)− αη(x)) =


α− αη(x) if η(x) > α

η(x)− αη(x) if η(x) ≤ α
.

Hence, h∗(x) = sign(η(x)− α) is Bayes optimal for L.

Define t = u+1 − u−1, so

1(argmax(u) = +1) = 1(t > 0) ,

1(argmax(u) = −1) = 1(t ≤ 0) .

Then

UM(u, y) = (1− α)1(y = +1)1(argmax(u) = −1) + α1(y = −1)1(argmax(u) = +1)

= (1− α)1(y = +1)1(t ≤ 0) + α1(y = −1)1(t > 0) ,

which is Eq. (5.14).

Remark. This proposition also recovers Lemma 5.1.

However, UM is still discrete and, therefore, hard to optimize. To overcome this issue, we can

replace 1(argmax(u) ̸= j) by a continuous surrogate function ψ for L0-1 as in Eq. (5.20).

Definition 5.1. Let ψ : Rn × Y → R+ be a surrogate loss for L0-1. We define the corresponding

M-weighted surrogate loss ψM : Rn × Y → R+ as

ψM(u, y) =

n∑
j=1

my,jψ(u, j) . (5.29)

ERM framework. We can use empirical risk minimization (ERM) framework to minimize the
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unbiased estimator of

erψ
M

D [f ] = E(X,Y )∼D[ψ
M(f(X), Y )] (5.30)

over a training sample S = {(x1, y1), ..., (xm, ym)} to learn a scoring function f in some function

class Fn, where F ⊆ (X → R), as

f̂ = min
f∈Fn

1

m

m∑
i=1

ψM(f(xi), yi) . (5.31)

Then, the resulting classifier h : X → [n] is h = argmax ◦f̂ .

5.3.3. Convexity of ψM

The following proposition shows that for non-negative M, if the underlying surrogate loss ψ(u, y)

is convex in u, then the weighted loss ψM(u, y) is convex in u as well.

Proposition 5.5. Suppose ψ(u, y) is convex in u, and M is a non-negative matrix, i.e., mi,j ≥ 0.

Then ψM(u, y) is convex in u.

Proof. This follows immediately since ψM(u, y) is a linear combination of convex functions with

non-negative coefficients.

5.3.4. Examples of Various Multiclass Surrogate Losses and Corresponding M-weighted Surrogate

Losses

Below, we apply the method above to several commonly used multiclass surrogate losses. In the

remark at the end, we mention calibration results of these multiclass surrogate losses.

Example 5.1 (Multiclass logistic regression surrogate loss (Zhang, 2004b)). Suppose ψmlog : Rn ×

Y → R+ is the multiclass logistic regression surrogate loss, i.e.,

ψmlog(u, y) = −uy + ln(
n∑

y′=1

exp(uy′)) . (5.32)
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Then the corresponding M-weighted multiclass logistic regression surrogate loss is

ψM
mlog(u, y) =

n∑
j=1

my,jψmlog(u, j)

=

n∑
j=1

my,j [−uy + ln(

n∑
y′=1

exp(uy′))]

= −
n∑
j=1

my,j · uy + ln(

n∑
y′=1

exp(uy′)) ·
n∑
j=1

my,j . (5.33)

Example 5.2 (One-vs-all logistic regression surrogate loss (Zhang, 2004b)). Suppose ψOvA,log :

Rn × Y → R+ is the one-vs-all logistic regression surrogate loss, i.e.,

ψOvA,log(u, y) = ln(1 + e−uy) +
∑
y′ ̸=y

ln(1 + euy′ ) . (5.34)

Then the corresponding M-weighted one-vs-all logistic regression surrogate loss is

ψM
OvA,log(u, y) =

n∑
j=1

my,jψOvA,log(u, j)

=
n∑
j=1

my,j [ln(1 + e−uy) +
∑
y′ ̸=y

ln(1 + euy′ )] . (5.35)

Example 5.3 (Crammer-Singer surrogate loss (Crammer and Singer, 2001)). Suppose ψCS : Rn ×

Y → R+ is the Crammer-Singer surrogate loss, i.e.,

ψCS(u, y) = max
y′ ̸=y

(1− (uy − uy′))+ , (5.36)

where (z)+ = max(0, z) is hinge loss. Then the corresponding M-weighted Crammer-Singer surro-
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gate loss is

ψM
CS(u, y) =

n∑
j=1

my,jψCS(u, j)

=

n∑
j=1

my,j ·max
y′ ̸=y

(1− (uy − uy′))+ . (5.37)

Example 5.4 (One-vs-all hinge surrogate loss (Zhang, 2004b)). Suppose ψOvA,hinge : Rn×Y → R+

is the one-vs-all hinge surrogate loss, i.e.,

ψOvA,hinge(u, y) = (1− uy)+ +
∑
y′ ̸=y

(1 + uy′)+ , (5.38)

where (z)+ = max(0, z) is hinge loss. Then the corresponding M-weighted one-vs-all hinge surrogate

loss is

ψM
OvA,hinge(u, y) =

n∑
j=1

my,jψOvA,hinge(u, j)

=
n∑
j=1

my,j [(1− uy)+ +
∑
y′ ̸=y

(1 + uy′)+] . (5.39)

Example 5.5 (Weston-Watkins surrogate loss (Weston and Watkins, 1999)). Suppose ψWW : Rn×

Y → R+ is the Weston-Watkins surrogate loss, i.e.,

ψWW(u, y) =
∑
y′ ̸=y

(1− (uy − uy′))+ , (5.40)

where (z)+ = max(0, z) is hinge loss. Then the corresponding M-weighted Weston-Watkins surrogate
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loss is

ψM
WW(u, y) =

n∑
j=1

my,jψWW(u, j)

=

n∑
j=1

my,j ·
∑
y′ ̸=y

(1− (uy − uy′))+ . (5.41)

Example 5.6 (Lee-Lin-Wahba surrogate loss (Lee et al., 2004)). Suppose ψLLW : C × Y → R+ is

the Lee-Lin-Wahba surrogate loss, where C = {u ∈ Rn :
∑n

j=1 uj = 0}, i.e.,

ψLLW(u, y) =
∑
y′ ̸=y

(1 + uy′)+ , (5.42)

where (z)+ = max(0, z) is hinge loss. Then the corresponding M-weighted Lee-Lin-Wahba surrogate

loss is

ψM
LLW(u, y) =

n∑
j=1

my,jψLLW(u, j)

=
n∑
j=1

my,j ·
∑
y′ ̸=y

(1 + uy′)+ . (5.43)

Example 5.7 (Generalized cross entropy surrogate loss (Zhang and Sabuncu, 2018; Cao et al.,

2022)). Suppose ψgce,γ : Rn × Y → R+ is the generalized cross entropy surrogate loss for γ ∈ (0, 1],

i.e.,

ψgce,γ(u, y) =
1

γ

[
1−

( euy∑n
i=1 e

ui

)γ]
. (5.44)

Then the corresponding M-weighted generalized cross entropy surrogate loss is

ψM
gce,γ(u, y) =

n∑
j=1

my,jψgce,γ(u, j)

=
n∑
j=1

my,j ·
1

γ

[
1−

( euy∑n
i=1 e

ui

)γ]
. (5.45)
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Remark. Among the surrogate losses shown in the examples above, ψmlog, ψOvA,log and ψLLW are

universally calibrated for L0-1 (calibrated for all probability distributions), while ψCS, ψOvA,hinge

and ψWW are calibrated under the so-called ‘dominant-label’ condition (calibrated for probability

distributions in which the conditional distributions p(y|x) assign probability at least 1
2 to one of the

n classes) (Zhang, 2004b; Tewari and Bartlett, 2007). Cao et al. (2022) showed that the generalized

cross entropy surrogate loss ψgce,γ is universally calibrated for L0-1 for any γ ∈ (0, 1].

5.3.5. Calibration and Consistency

In this section, we show that if ψ is classification-calibrated (L0-1-calibrated), then the weighted

surrogate loss is L-calibrated. We also provide an estimation error bound for using ERM framework

over a training sample. We start with some notations and definitions.

For surrogate prediction space C and surrogate loss ψ : C×Y → R+, we have the following definitions.

Definition 5.2 (Conditional risk). Condition risk Lψ : C ×∆n → R+ is defined as

Lψ(u,p) = EY∼p

[
ψ(u, Y )

]
. (5.46)

Definition 5.3 (Conditional Bayes risk). Condition Bayes risk Hψ : ∆n → R+ is defined as

Hψ(p) = inf
u∈C

Lψ(u,p) . (5.47)

Definition 5.4 (Conditional regret). Condition Bayes risk Rψ : C ×∆n → R+ is defined as

Rψ(u,p) = Lψ(u,p)−Hψ(p) . (5.48)

Definition 5.5 (Multiclass classification calibration (Zhang, 2004b; Tewari and Bartlett, 2007;

Steinwart, 2007)). A multiclass surrogate loss ψ : C × Y → R+ is L0-1-calibrated (classification-
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calibrated) if

∀p ∈ ∆n : inf
u∈C:argmaxŷ uŷ /∈argminŷ(ℓ

0-1
ŷ )⊤p

Lψ(u,p) > inf
u∈C

Lψ(u,p) = Hψ(p) , (5.49)

where ℓ0-1
ŷ is the ŷ-column of L0-1. Or equivalently, if

∀p ∈ ∆n : inf
u∈C:argmaxŷ uŷ /∈argmaxŷ pŷ

Lψ(u,p) > inf
u∈C

Lψ(u,p) = Hψ(p) . (5.50)

We can also define calibration for a general multiclass loss L.

Definition 5.6 (Multiclass L calibration). A multiclass surrogate loss ψ : C × Y → R+ is L-

calibrated if

∀p ∈ ∆n : inf
u∈C:argmaxŷ uŷ /∈argminŷ(ℓŷ)

⊤p
Lψ(u,p) > inf

u∈C
Lψ(u,p) = Hψ(p) , (5.51)

where ℓŷ is the ŷ-column of L.

Calibration result.

Theorem 5.6. Let ψ : Rn × Y → R+ be a surrogate loss. For a general multiclass loss L, define

M = β ·1⊤n −αL, α > 0, where 1n ∈ Rn is a vector with all entries equal to one. Let β be such that

βy = α ·max
j
ℓy,j .

Then,

my,ŷ = βy − αℓy,ŷ ≥ 0 .

121



So all entries of M are non-negative. Define the weighted surrogate loss ψM : Rn × Y → R+ as

ψM(u, y) =
n∑
j=1

my,jψ(u, j) .

Then if ψ is L0-1-calibrated, we have that ψM is L-calibrated.

Proof. We have the conditional risk for ψ as

Lψ(u,p) = EY∼p

[
ψ(u, Y )

]
= ψ(u)⊤p , (5.52)

where ψ(u) = [ψ(u, 1), ..., ψ(u, n)]⊤.

The conditional risk for ψM is

LψM(u,p) = EY∼p

[
ψM(u, Y )

]
= EY∼p

[ n∑
j=1

mY,jψ(u, j)
]

=

n∑
j=1

ψ(u, j)EY∼p

[
mY,j

]
=

n∑
j=1

ψ(u, j)(M⊤p)j

= ψ(u)⊤(M⊤p) . (5.53)

Let ωM(p) = ∥M⊤p∥1 and νM(p) = M⊤p
∥M⊤p∥1

. Since M is a non-negative matrix, νM(p) ∈ ∆n.

Moreover,

L =
β · 1⊤n −M

α
. (5.54)
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Then,

inf
u∈C:argmaxŷ uŷ /∈argminŷ(ℓŷ)

⊤p
LψM(u,p) > inf

u∈C
LψM(u,p)

⇐⇒ inf
u∈C:argmaxŷ uŷ /∈argminŷ(ℓŷ)

⊤p
ψ(u)⊤(M⊤p) > inf

u∈C
ψ(u)⊤(M⊤p)

⇐⇒ inf
u∈C:argmaxŷ uŷ /∈argminŷ(ℓŷ)

⊤p
ψ(u)⊤(ωM(p)νM(p)) > inf

u∈C
ψ(u)⊤(ωM(p)νM(p))

⇐⇒ inf
u∈C:argmaxŷ uŷ /∈argminŷ(L

⊤p)ŷ
ψ(u)⊤νM(p) > inf

u∈C
ψ(u)⊤νM(p)

⇐⇒ inf
u∈C:argmaxŷ uŷ /∈argminŷ((

β·1⊤n −M
α

)⊤p)ŷ

ψ(u)⊤νM(p) > inf
u∈C

ψ(u)⊤νM(p)

⇐⇒ inf
u∈C:argmaxŷ uŷ /∈argminŷ(

1n·β⊤−M⊤
α

p)ŷ

ψ(u)⊤νM(p) > inf
u∈C

ψ(u)⊤νM(p)

⇐⇒ inf
u∈C:argmaxŷ uŷ /∈argmaxŷ(M

⊤p)ŷ
ψ(u)⊤νM(p) > inf

u∈C
ψ(u)⊤νM(p)

⇐⇒ inf
u∈C:argmaxŷ uŷ /∈argmaxŷ(

M⊤p

∥M⊤p∥1
)ŷ

ψ(u)⊤νM(p) > inf
u∈C

ψ(u)⊤νM(p)

⇐⇒ inf
u∈C:argmaxŷ uŷ /∈argmaxŷ(νM(p))ŷ

ψ(u)⊤νM(p) > inf
u∈C

ψ(u)⊤νM(p) . (5.55)

Since νM(p) ∈ ∆n and ψ is L0-1-calibrated, this shows ψM is L-calibrated.

Remark. In Theorem 5.6, surrogate losses ψ must be universally calibrated for L0-1 (calibrated for

all probability distributions). Such surrogate losses include ψmlog, ψOvA,log, ψLLW and ψgce,γ (see

Section 5.3.4).

Estimation error bound. Below, we provide an estimation error bound for scoring function f̂

learned using ERM framework over a training sample.

Definition 5.7 (Rademacher complexity (Bartlett and Mendelson, 2002; Cao et al., 2022)). Let

Z1, ..., Zm ∈ Z be m i.i.d. random variables drawn from a probability distribution µ, and F = {f :

Z → R} be a class of measurable functions. Then the expected Rademacher complexity of function
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class F is given as follows:

Rm(F) = EZ1,...,Zm∼µEσ

[
sup
f∈F

1

m

m∑
i=1

σif(Zi)
]
, (5.56)

where σ1, ..., σm are Rademacher random variables taking value from {−1, 1} uniformly.

Theorem 5.7. Fix δ ∈ (0, 1). Suppose scoring function f belongs to some function class Fn, where

each fi ∈ F ⊆ (X → R). Then f ∈ Fn ⊆ (X → Rn). Let ψ(·, y) be ρ-Lipschitz continuous and is

bounded by Cψ > 0 for all y. Let M = maxy,j |my,j |. Assume that the identifiable condition holds,

i.e., minf∈Fn erψ
M

D [f ] = erψ
M,∗

D . Then the following inequality holds with probability at least 1− δ:

erψ
M

D [̂f ]− erψ
M,∗

D ≤ 4
√
2n2MρRm(F) + nMCψ

√
2 ln(2/δ)

m
. (5.57)

Proof. From the conditions, it is easy to see that ψM(·, y) is (nMρ)-Lipschitz continuous and is

bounded by nMCψ for all y. Then we can follow routine (Bartlett and Mendelson, 2002; Mohri et al.,

2012; Cao et al., 2022) to show

sup
f∈Fn

|erψ
M

D [f ]− erψ
M

S [f ]| ≤ 2
√
2nMρ

n∑
j=1

Rm(F) + nMCψ

√
ln(2/δ)

2m

= 2
√
2n2MρRm(F) + nMCψ

√
ln(2/δ)

2m
, (5.58)

using McDiarmid’s inequality (McDiarmid, 1989) and Talagrand’s contraction lemma (Maurer,

2016), where erψ
M

S [f ] = 1
m

∑m
i=1 ψ

M(f(xi), yi).
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Then for f∗ = argminf∈Fn erψ
M

D [f ], we have

erψ
M

D [̂f ]− min
f∈Fn

erψ
M

D [f ] = erψ
M

D [̂f ]− erψ
M,∗

D

=
(
erψ

M

D [̂f ]− erψ
M

S [̂f ]
)
+
(
erψ

M

S [̂f ]− erψ
M

S [f∗]
)
+
(
erψ

M

S [f∗]− erψ
M,∗

D

)
≤
(
erψ

M

D [̂f ]− erψ
M

S [̂f ]
)
+
(
erψ

M

S [f∗]− erψ
M,∗

D

)
≤ 2 sup

f∈Fn
|erψ

M

D [f ]− erψ
M

S [f ]|

= 4
√
2n2MρRm(F) + nMCψ

√
2 ln(2/δ)

m
. (5.59)

Regret transfer bound. It is known that ψM is L-calibrated is equivalent to that ψM admits a

regret transfer bound w.r.t. L (Zhang, 2004b; Tewari and Bartlett, 2007; Steinwart, 2007).

5.4. Weighted Loss Method for Multiclass Learning from Noisy Labels

In this section, we show how to apply weighted surrogate losses in Section 5.3 to learn from noisy

labels in multiclass classification; we achieve this by choosing appropriate weights designed to correct

label noise.

We will denote by η, η̃ : X→∆n the (vector) class probability functions under the clean distribu-

tion D associated with clean labeled examples and the noisy distribution D̃ associated with noisy

examples, respectively, with components given by

ηy(x) = P(Y = y |X = x)

η̃y(x) = P(Ỹ = y |X = x)
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for each y ∈ [n]. It is easy to see that

η̃y(x) =
∑
y′∈[n]

P(Ỹ = y |Y = y′) ·P(Y = y′ |X = x)

=
∑
y′∈[n]

γy′,y · ηy′(x)

= c⊤y η(x) ,

which gives

η̃(x) = C⊤η(x) .

Therefore, provided C is invertible, we have

η(x) = (C⊤)−1η̃(x) . (5.60)

Bayes optimal classifier for L. For any multiclass loss matrix L ∈ Rn×n, the Bayes optimal

classifier for L (which for any instance x, chooses a prediction that minimizes the expected loss

under L) is given by

hL,∗D (x) = argmin
y∈[n]

(L⊤η(x))y .

Weighted loss method to learn from noisy labels. We first show that we can convert a

problem of multiclass learning from noisy labels into a problem of multiclass learning for a general

loss L.

Proposition 5.8. Let L = C−1L0-1. Then any Bayes optimal classifier for L w.r.t. D̃ is also

Bayes optimal for L0-1 w.r.t. D.
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Proof.

hL,∗
D̃

(x) = argmin
y∈[n]

(L⊤η̃(x))

= argmin
y∈[n]

(L0-1(C⊤)−1η̃(x))

= argmin
y∈[n]

(L0-1η(x)) (by Eq. (5.60))

= hL
0-1,∗

D (x) . (5.61)

Let L = C−1L0-1. Let ψ : Rn × Y → R+ be a surrogate loss for L0-1. Define M = β · 1⊤n − αL by

choosing α > 0 and β so that M is non-negative. Then we define the corresponding M-weighted

surrogate loss ψM : Rn × Y → R+ as

ψM(u, y) =
n∑
j=1

my,jψ(u, j) . (5.62)

By Theorem 5.6, if ψ is L0-1-calibrated, then ψM is L-calibrated. Chaining with Proposition

5.8, it means that optimizing ψM over the noisy training sample S̃ can output a classifier whose

performance converges to Bayes optimal w.r.t. the clean distribution D as the size of noisy training

sample goes to infinity. We formalize this result in a theorem below.

Theorem 5.9. Let ψ : Rn × Y → R+ be a surrogate loss. Let C be the noise matrix. Define

L = C−1L0-1, and define M = β · 1⊤n − αL, α > 0, where 1n ∈ Rn is a vector with all entries equal

to one, and β is such that

βy = α ·max
j
ℓy,j .
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Then,

my,ŷ = βy − αℓy,ŷ ≥ 0 .

So all entries of M are non-negative. Define the weighted surrogate loss ψM : Rn × Y → R+ as

ψM(u, y) =
n∑
j=1

my,jψ(u, j) .

If ψ is L0-1-calibrated, then there exists an invertible, nondecreasing transformation ξ : R+ → R+

with ξ(0) = 0 such that for all clean probability distribution D on X × [n] and the corresponding

noisy probability distribution D̃ obtained using the noise matrix C, and all function f : X → Rn:

regretL
0-1

D [argmax ◦f ] ≤ ξ
(
regretψ

M

D̃
[f ]
)
. (5.63)

Proof. Since ψ is L0-1-calibrated, by Theorem 5.6, ψM is L-calibrated. By Zhang (2004b);

Tewari and Bartlett (2007); Steinwart (2007), there exists an invertible, nondecreasing transfor-

mation ξ : R+ → R+ with ξ(0) = 0 such that for all clean probability distribution D on X × [n]

and the corresponding noisy probability distribution D̃ obtained using the noise matrix C, and all

function f : X → Rn:

regretL
D̃
[argmax ◦f ] ≤ ξ

(
regretψ

M

D̃
[f ]
)
. (5.64)
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Let h : X → [n] be a classifier obtained from f by h = argmax ◦f . Then

erL
D̃
[h] = E

(X,Ỹ )∼D̃
[
ℓ
Ỹ ,h(X)

]
= EXEỸ∼η̃(X)

[
ℓ
Ỹ ,h(X)

]
= EX

[
(L⊤η̃(X))h(X)

]
= EX

[
(L0-1(C⊤)−1η̃(X))h(X)

]
(by Eq. (5.60))

= EX
[
(L0-1η(X))h(X)

]
= EXEY∼η(X)

[
ℓY,h(X)

]
= E(X,Y )∼D

[
ℓY,h(X)

]
= erL

0-1

D [h] . (5.65)

So, it follows that

regretL
D̃
[h] = regretL

0-1

D [h] . (5.66)

And we have

regretL
0-1

D [argmax ◦f ] = regretL
D̃
[argmax ◦f ] ≤ ξ

(
regretψ

M

D̃
[f ]
)
, (5.67)

as claimed.

In the example below, we apply the method above to learn from noisy labels in binary classification.

Our method recovers results in Natarajan et al. (2013), showing that the method covers the weighted

loss method in Natarajan et al. (2013) as a special case.

Example 5.8. The noise matrix C is binary classification with labels −1,+1 can be written as
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follows:

C =

+1 −1 +1 1− ρ+1 ρ+1

−1 ρ−1 1− ρ−1

,

Then, we have

L = C−1L0-1

=
1

1− ρ+1 − ρ−1

 −ρ+1 1− ρ−1

1− ρ+1 −ρ−1

 .
Note that 1− ρ+1 − ρ−1 > 0 since ρ+1 + ρ−1 < 1. Define

M =

1−ρ−1

2
1−ρ−1

2

1−ρ+1

2
1−ρ+1

2

− 1− ρ+1 − ρ−1

2
L =

1−ρ−1+ρ+1

2 0

0 1−ρ+1+ρ−1

2


according to Eq. (5.23). Clearly, entries of M are non-negative. Comparing with Proposition 5.4,

Theorem 5.2 and Theorem 5.3, we recognize that this choice of M recovers the weighted loss method

for binary learning from noisy labels with

α∗ =
1− ρ+1 + ρ−1

2
.

5.5. Weighted Loss Method for Multiclass Learning with a Reject Option

In some multiclass learning settings, a classifier is required to refrain from making a prediction to

avoid costly misclassification errors when encountering examples that are difficult to classify (i.e.,

when the confidence of classification of an example is low). Such settings are termed ‘classification

with a reject option’, and have been studied in standard binary and multiclass classification prob-

lems (Chow, 1970; Yuan and Wegkamp, 2010; El-Yaniv and Wiener, 2010; Bartlett and Wegkamp,

2008; Cortes et al., 2016a,b; Geifman and El-Yaniv, 2017; Ramaswamy et al., 2018; Ni et al., 2019;
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Shen et al., 2020; Charoenphakdee et al., 2021; Cao et al., 2022).

In this section, we show how to apply weighted surrogate losses in Section 5.3 for multiclass learning

with a reject option.

5.5.1. Learning with a Reject Option

The problem setting of learning with a reject option is an extension of the standard classification

setting. There is an instance space X , and a set of n class labels Y, which we will take without

loss of generality to be Y = [n]. There is a (unknown) joint probability distribution D on X × Y

from which labeled examples (X,Y ) are drawn. The prediction space Ŷ, however, consists of labels

in Y and a ‘reject’ option. Without loss of generality, we assume the reject option is n + 1, so

Ŷ = Y ∪ {n + 1} = [n + 1]. The goal is to learn a classifier h : X → [n + 1] the performs well

w.r.t. the performance measure. The commonly used performance measure in learning with a reject

option is the 0-1-c loss, defined as follows:

ℓ0-1-c (y, ŷ) =


c, ŷ = n+ 1

1(ŷ ̸= y), ŷ ∈ [n]

, (5.68)

where c ∈ (0, 1). That is, the cost of abstention should be higher than that of a correct prediction,

but should be lower than that of a wrong prediction. We will denote by η : X→∆n the (vector)

class probability functions under distribution D, with components given by

ηy(x) = P(Y = y |X = x) ,

for each y ∈ [n]. It is well-known that Chow’s rule (Chow, 1970) characterizes the optimal solution

of this problem.

Definition 5.8 (Chow’s rule). A classifier h : X → [n + 1] is Bayes optimal if and only if the
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following condition holds almost surely:

h(x) =


n+ 1, maxy∈[n] ηy(x) ≤ 1− c

argmaxy∈[n] ηy(x), otherwise
. (5.69)

An interpretation of Chow’s rule is that an optimal classifier should refrain from making a prediction

for an instance if its most confident prediction is still not confident enough. We can see that 1− c

is a threshold, and can be defined according to the nature of the problem at hand.

5.5.2. Weighted Loss Method for Learning with a Reject Option

In this section, we apply weighted surrogate losses for multiclass learning with a reject option. We

start by writing the loss function ℓ0-1-c (Eq. (5.68)) in a matrix form. Define L ∈ Rn×(n+1) as

follows:

ℓy,ŷ = ℓ0-1-c (y, ŷ) . (5.70)

Let 1n ∈ Rn be a vector with all entries equal to 1. Then we can write L as

L =

[
L0-1 c · 1n

]
. (5.71)

The Bayes optimal classifier for L (which for any instance x, chooses a prediction that minimizes

the expected loss under L) is given by

hL,∗D (x) = argmin
y∈[n+1]

(L⊤η(x))y

=


argminy∈[n] ((L

0-1)⊤η(x))y , miny′∈[n] ((L
0-1)⊤η(x))y′ < c1⊤nη(x) = c

n+ 1 , otherwise
,

=


argmaxy∈[n] ηy(x) , maxy′∈[n] ηy′(x) > 1− c

n+ 1 , otherwise
. (5.72)
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We can see that hL,∗D satisfies Chow’s rule (Definition 5.8).

Let L be the cost-sensitive loss defined in Eq. (5.70). We apply weighted surrogate losses described

in Section 5.3 to L.

According to Eq. (5.23). we define M ∈ Rn×(n+1)
+ as

M = 1n1
⊤
n+1 − L

=

[
In (1− c) · 1n

]
, (5.73)

where In ∈ Rn×n is the identity matrix, and 1n ∈ Rn is a vector whose entries are all 1.

Let ψ : Rn+1 × Y → R+ be a surrogate loss. Then we define the M-weighted surrogate loss

ψM : Rn+1 × Y → R+ as

ψM(u, y) =

n+1∑
j=1

my,j · ψ(u, j)

= ψ(u, y) + (1− c)ψ(u, n+ 1) . (5.74)

Remark. The weighted loss ψM is exactly the surrogate loss proposed in Cao et al. (2022) (Defi-

nition 5), showing that the weighted loss method covers the method proposed in Cao et al. (2022)

as a special case in learning with a reject option.

Consistency and estimation error bound. With Theorem 5.6, if ψ : Rn+1 × Y → R+ is

classification-calibrated, then ψM is consistent for L. This result is consistent with Theorem 4 in

Cao et al. (2022). In addition, with Theorem 5.7, we can also recover the estimation error bound

shown in Theorem 3 of Cao et al. (2022).

5.6. Conclusion

In this work, we have designed a surrogate loss for a general multiclass loss L by taking a weighted

combination of surrogate losses for the standard 0-1 loss, closing an open problem. Our method
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works with both smooth surrogate losses and non-smooth surrogate losses, allowing for margin-

based losses. The proposed method also preserves the convexity of the underlying surrogate loss.

We have provided theoretical results to show the proposed method is Bayes consistent, and provided

an estimation error bound. Moreover, we have applied the proposed method to extend the weighted

loss method proposed in Natarajan et al. (2013) for binary learning from noisy labels to multiclass

learning from noisy labels. Finally, we have also applied the proposed method to solve problems in

multiclass learning with a reject option, recovering several results of Cao et al. (2022).

134



CHAPTER 6

COMPLEX LABEL SPACE AND COMPLEX LEARNING SETTING: CONSISTENT

MULTI-LABEL LEARNING FROM NOISY LABELS

Complex Label Space
Complex Learning
Setting

Complex Performance Measure

⋆ This work

Figure 6.1: Position of Consistent Multi-Label Learning from Noisy Labels in the thesis.

In this chapter, we move to begin our discussion of the intersection between complex label spaces and

complex label settings. In particular, we show how to design consistent noise-corrected algorithms

for multi-label learning from noisy labels.

6.1. Background of Complex Label Space and Learning Setting

In previous chapters, we have seen both complex label spaces and complex learning settings. In

real world, there are problems that pertain both complexities. Such problems require tackling both

complexities, necessitating a broad toolbox of methods and algorithms. Here are a few examples of

real-world machine learning problems that involve both complex label spaces and complex learning

settings:

Automated Medical Diagnosis: In healthcare, developing machine learning models for medical
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diagnosis can involve predicting multiple related diseases for a patient based on their symptoms,

medical history, and test results. This is a multi-label classification problem as a patient could have

multiple diseases at the same time. In addition, the learning setting is also complex due to the

presence of noisy labels (diagnosis errors or inconsistencies across different doctors), missing labels

(unavailable test results), and imbalanced data (rare diseases have fewer instances in the dataset).

Natural Language Processing: In natural language processing, sequence labeling tasks such as

named entity recognition (NER) and part-of-speech (POS) tagging involve assigning a label to each

word in a sentence, which is a complex label space scenario. Moreover, these tasks often involve

transfer learning, where models pre-trained on large corpora are fine-tuned for the specific sequence

labeling task.

Multi-modal Emotion Recognition: In this task, the goal is to recognize the emotional state

of a person using multi-modal data such as text, audio, and video. This task involves a complex

label space if the goal is to predict multiple emotion labels for each instance. It could also involve

complex learning settings such as semi-supervised learning (when there is a lack of fully labeled

data), and transfer learning (when knowledge is transferred from one modality to another).

Self-driving Cars: Autonomous vehicles need to interpret sensory input (like camera feeds, LI-

DAR, and RADAR data) to identify and classify objects around them (cars, pedestrians, bicycles,

etc.). This is a complex label space problem, particularly in the case of image segmentation tasks

that assign labels to each pixel in the image. The learning setting is also complex, involving on-

line learning (constantly adapting to new data), reinforcement learning (learning to make decisions

based on rewards), and transfer learning (applying pre-trained models to new tasks).

Recommendation Systems: Modern recommendation systems aim to provide personalized rec-

ommendations by predicting a list of items (like movies, songs, products) that a user would like,

which represents a complex label space. In addition, these systems often operate in complex learning

settings. For instance, they may use semi-supervised learning when labeled data (user feedback) is

scarce, active learning to intelligently decide which items to recommend to collect valuable feedback,
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Figure 6.2: Multi-label learning from noisy labels. (Images in the left boxes were generated with
the help of Midjourney.)

and online learning to adapt to the evolving tastes of users and the introduction of new items.

6.2. Introduction

6.2.1. Background and Our Contributions

In many applications of machine learning, accurate labels are difficult or expensive to obtain; there-

fore, in practice, one often receives noisy labels. This problem is even more pronounced in multi-label

classification (MLC) settings, where multiple labels/tags can be active in an instance simultane-

ously. In recent years, there has been much interest in developing learning algorithms that can

learn good classifiers from data with noisy labels (Frénay and Verleysen, 2014; Han et al., 2020;

Song et al., 2023). While there has been much work in this area for binary and multiclass prob-

lems, there has been relatively limited work on multi-label learning from noisy labels. In this work,

we develop principled noise-corrected multi-label learning algorithms for a variety of performance

measures under the general class-conditional noise (CCN) model.

The key challenge in learning from noisy labels is to develop algorithms that can produce accu-

rate classifiers for the true/clean distribution despite noisy labels; in particular, a desirable goal is

that the algorithms should be (Bayes) consistent, meaning that as the size of the (noisy) train-

ing sample increases, the performance of the learned classifier converges to the Bayes optimal

performance under the clean (non-noisy) distribution (see Figure 6.2). For binary and multi-

class learning, many such consistent algorithms have been designed under CCN and related noise
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models (Natarajan et al., 2013; Scott et al., 2013; Scott, 2015; Menon et al., 2015; Liu and Tao,

2016; Patrini et al., 2016; Ghosh et al., 2017; van Rooyen and Williamson, 2017; Patrini et al., 2017;

Natarajan et al., 2017; Wang et al., 2018; Xia et al., 2019; Liu and Guo, 2020; Zhang et al., 2021;

Li et al., 2021; Zhang and Agarwal, 2024). However, for multi-label learning, only a few consistent

noise-corrected algorithms have been designed, and the consistency guarantees that do currently

exist are for specific performance measures under the relatively simple independent flipping noise

(IFN) model (a special case of CCN) that fails to capture correlations among tags (Kumar et al.,

2020; Xie and Huang, 2023). In this work, we develop provably Bayes consistent noise-corrected

multi-label algorithms for a broad family of multi-label performance measures under the general

CCN model.

Our contributions include the following (see also Figure 6.3):

1. Algorithms. We provide the following three consistent noise-corrected multi-label algorithms,

all of which work by identifying a small set of what we call ‘Bayes-sufficient’ statistics for the target

loss and estimating these reliably from the given noisy training sample:

• Noise-Corrected Plug-in (NCPLUG) algorithm for Hamming loss under IFN;

• Noise-Corrected Exact F-measure Plug-in (NCEFP) algorithm for multi-label F1-measure un-

der general CCN;

• Noise-Corrected Output Coding (NCOC) algorithm for general low-rank multi-label losses

under general CCN.

2. Regret transfer bounds and consistency. For all these algorithms, we provide quantitative

regret transfer bounds to establish consistency. The bounds suggest that as the amount of label noise

increases, the (noisy) sample size needed to reach a given level of performance generally increases.

3. Similar-Tag Switching Noise (STSN) model. While our NCEFP and NCOC algorithms are

provably consistent under general CCN models, in multi-label settings, general CCN models involve

extremely large noise matrices that make computation prohibitive. We propose a new family of
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Noise model Multi-label losses Noise-corrected algorithms
Symmetric IFN Hamming Kumar et al. (2020)
IFN Hamming, Ranking CCMN (Xie and Huang, 2023)
IFN Hamming NCPLUG (this work)
CCN F1-measure NCEFP (this work)
CCN General low-rank L NCOC (this work)

Figure 6.3: Summary of consistent noise-corrected multi-label algorithms and associated noise mod-
els.

structured multi-label noise models that we term Similar-Tag Switching Noise (STSN) models.

STSN models are a special case of CCN that require fewer parameters and enable fast computation

for NCEFP and NCOC; moreover, unlike IFN models, they also capture some correlations among

tags.

4. Experimental validation. Finally, we evaluate our algorithms on both synthetic and real

data.

6.2.2. Notation

For an integer n, we denote by [n] the set of integers {1, . . . , n}, and by ∆n the probability simplex

{p ∈ Rn+ :
∑n

y=1 py = 1}. For a vector a, we denote by ∥a∥p the p-norm of a, and by aj the

j-indexed entry of a. For a matrix A, we denote by ∥A∥p the induced p-norm of A, by ay the

y-indexed column vector of A, and by aj,y the (j, y)-indexed element of A. We use 1(·) to denote

the indicator function and p−→ to denote convergence in probability.

6.2.3. Related Work

Below we briefly review some works that are most closely related to our study.

• Consistent algorithms for standard (non-noisy) multi-label learning. Bayes optimal

multi-label classifiers and consistent algorithms for MLC performance measures, including Hamming

loss and F1-measure, have been studied by Dembczynski et al. (2010a, 2011); Gao and Zhou (2013);

Dembczynski et al. (2013); Menon et al. (2019); Zhang et al. (2020); Wu and Zhu (2020); Wu et al.

(2021) and others. These works do not deal with noisy labels. A detailed survey on multi-label

learning can be found in Zhang and Zhou (2014).
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• Consistent algorithms for binary/multiclass learning from noisy labels for CCN

models. Many consistent noise-corrected algorithms have been designed for binary/multiclass

learning (Natarajan et al., 2013; Scott et al., 2013; Scott, 2015; Menon et al., 2015; Liu and Tao,

2016; Patrini et al., 2016; Ghosh et al., 2017; van Rooyen and Williamson, 2017; Patrini et al., 2017;

Natarajan et al., 2017; Wang et al., 2018; Xia et al., 2019; Liu and Guo, 2020; Zhang et al., 2021;

Li et al., 2021; Zhang and Agarwal, 2024). But when applied to multi-label problems in a straight-

forward way (by treating each label vector as a class), these algorithms need exponential (in the

number of tags) number of parameters and suffer from slow computation. In essence, they are not

designed for multi-label problems.

• Multi-label learning from noisy labels. Two types of noise models have been studied:

statistical and non-statistical. For statistical noise models, Kumar et al. (2020) studied a special

‘symmetric’ case of IFN and focused on loss functions satisfying certain conditions (e.g., Hamming

loss). Xie and Huang (2023) showed consistent algorithms for Hamming and Ranking losses under

IFN. Li et al. (2022) proposed a way to estimate noise matrices under IFN. For non-statistical noise

models, partial multi-label learning (PML) is a prominent example, where for each instance, its

noisy label contains all active tags from the clean label, as well as some non-active tags. Some

algorithms have been proposed to deal with PML (Xie and Huang, 2018; Fang and Zhang, 2019;

Wang et al., 2019; Sun et al., 2019; Xie and Huang, 2020); however it is unclear whether a Bayes

optimal classifier can be recovered under PML. Other empirical studies of multi-label learning from

noisy labels include (Veit et al., 2017; Hu et al., 2018; Bai et al., 2020; Zhao and Gomes, 2021).

6.2.4. Organization

After preliminaries and background in Section 6.3, we provide intuition for our algorithms in Section

6.4, followed by our three noise-corrected algorithms in Section 6.5. Section 6.6 gives regret transfer

bounds for our algorithms. Section 6.7 describes the STSN model. Section 6.8 summarizes our

experiments. Finally, Section 6.9 concludes this work.
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6.3. Preliminaries and Background

Multi-label classification (MLC) with noisy labels. In an MLC problem, there is an instance

space X , and a set of s tags T = [s] := {1, . . . , s} that can be associated with each instance in X . For

example, in image tagging, X is the set of possible images, and T is a set of s pre-defined tags (such

as sky, cloud, water etc.) that can be associated with each image. The label space Y ⊆ {0, 1}s

consists of label vectors y ∈ {0, 1}s that indicate which of the s tags are active (specifically, yj = 1

denotes that tag j is active, and yj = 0 denotes it is inactive). Let |Y| denote the size of Y.

There is a (unknown) joint probability distribution D on X × Y from which labeled examples

(X,Y) are drawn. In the standard (non-noisy) MLC problem, the learner would be given training

examples drawn directly from D. However, when learning from noisy labels, the learner instead

sees only noisy examples (X, Ỹ), where Ỹ is a noisy version of Y. Given a noisy training sample

S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m, the goal is to learn a multi-label classifier h : X→Y that

performs well with respect to the clean distribution D.

Class-conditional noise (CCN). The label noise models we consider here belong to the well-

known CCN model that has been widely studied in binary and multiclass learning from noisy labels

(Natarajan et al., 2013; van Rooyen and Williamson, 2017; Patrini et al., 2017), in which a label

y is randomly flipped to a label ỹ with some probability cy,ỹ that depends on y and ỹ, but not

on the features. Specifically, the CCN model is characterized by a row-stochastic noise matrix

C ∈ [0, 1]|Y|×|Y| with entries cy,ỹ, such that for each y, ỹ ∈ Y, cy,ỹ = P(Ỹ = ỹ |Y = y). The

noisy training examples can therefore be viewed as being drawn i.i.d. from a ‘noisy’ distribution D̃

on X × Y: an example (X,Y) is first drawn randomly according to D, and then noise is injected

according to the noise matrix C to produce (X, Ỹ). In MLC, |Y| can be as large as 2s; therefore,

a fully general noise matrix C requires too many parameters (exponential in s). This necessitates

considering more structured noise models well-suited to MLC problems.

Independent flipping noise (IFN). So far, most previous work has considered only the very

simple multi-label IFN model (a special case of CCN) where each tag is flipped independently from
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active to inactive or vice versa; this involves only 2s parameters defined as c(j)0,1 = P(Ỹj = 1|Yj = 0)

and c(j)1,0 = P(Ỹj = 0|Yj = 1), ∀j ∈ [s].

Multi-label performance measures/loss matrices L. We will consider multi-label loss matrices

of the form L ∈ R|Y|×|Y|
+ , with entries ℓy,ŷ indicating the loss incurred on predicting ŷ when the

clean label is y. Two specific examples we will use throughout the paper are the following:

• (Normalized) Hamming loss LHam: ℓHam
y,ŷ =

1

s

s∑
j=1

1(ŷj ̸= yj) , (6.1)

• F1-measure LF1 (specified as a loss (Dembczynski et al., 2013; Zhang et al., 2020)):

ℓF1

y,ŷ = 1−
2
∑s

j=1 yj ŷj

∥y∥1 + ∥ŷ∥1
, where we take

0

0
= 1 . (6.2)

L-generalization error, L-regret, and Bayes consistency. Given a multi-label loss matrix

L, the L-generalization error of a multi-label classifier h : X→Y under the clean distribution

D is defined as erLD[h] = E(X,Y)∼D[ℓY,h(X)], its L-regret is defined as regretLD[h] = erLD[h] −

infh′:X→Y erLD[h
′]. We will say a noise-corrected algorithm that maps a noisy training sample S̃

to a classifier ĥ is Bayes consistent for L under D if regretLD[ĥ]
p−→ 0 as the noisy sample size

m→∞.

Multi-label class probability functions. We will denote by η, η̃ : X→∆|Y| the multi-label

class probability functions associated with the clean distribution D and the noisy distribution D̃,

respectively, defined as ηy(x) = P(Y = y|X = x) and η̃y(x) = P(Ỹ = y|X = x).

Binary and multiclass class probability estimation (CPE), and logistic losses. Our multi-

label algorithms will involve solving various binary and multiclass CPE sub-problems, which in turn

involve estimating the class probability functions associated with the corresponding binary/multi-

class problems. For binary CPE problems, we will use the binary logistic loss ϕlog : {0, 1}×R→R+

and associated inverse link function γ−1
log : R→[0, 1] defined by ϕlog(y, u) = ln(1 + e−(2y−1)u) and

γ−1
log(u) = 1

1+exp(−u) , respectively; similarly for n-class CPE problems, we will use the multiclass

logistic loss ϕmlog : [n] × Rn−1 → R+ and associated inverse link function γ−1
mlog : Rn−1 → ∆n
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defined by ϕmlog(y,u) = − ln
( exp(uy)

1+
∑n−1

i=1 exp(ui)

)
if y ∈ [n− 1] and ln

(
1+

∑n−1
i=1 exp(ui)

)
if y = n, and

(γ−1
mlog(u))y =

exp(uy)

1+
∑n−1

i=1 exp(ui)
if y ∈ [n− 1] and 1

1+
∑n−1

i=1 exp(ui)
if y = n, respectively.

6.4. Key Ideas and Intuition

Bayes optimal classifier for L and ‘Bayes-sufficient’ statistics q(x). Given a multi-label loss

matrix L, the Bayes optimal classifier for L under the clean distribution D (i.e., the classifier with

smallest L-generalization error under D) is given by

h∗(x) ∈ argmin
ŷ∈Y

η(x)⊤ℓŷ .

Our goal will be to construct an approximation to h∗ from S̃. There are two main challenges: (1) for

multi-label problems, η(x) ∈ ∆|Y| is potentially a very large vector; (2) we have access to only the

noisy training sample S̃. In order to overcome these challenges, the key ideas in all our algorithms

will be to (1) identify a small set of statistics q(x) of the class probability vector η(x) – which

we will refer to as ‘Bayes-sufficient’ statistics for L – that suffice to construct the Bayes optimal

classifier for L; and (2) estimate the statistics q(x) reliably from the given noisy training sample S̃.

6.5. Algorithms

6.5.1. Hamming Loss under IFN: NCPLUG Algorithm

Let us start with the simplest case: Hamming loss under the independent flipping noise (IFN)

model. This is also the main setting for which consistent noise-corrected algorithms have previously

been developed (Kumar et al., 2020; Xie and Huang, 2023). Under this setting, the loss and noise

model both involve independent components for the s tags, and the problem reduces to solving

s independent binary noisy label problems, one for each tag; indeed, the CCMN algorithm of

Xie and Huang (2023) essentially solves each of these binary problems using the binary unbiased

estimator method of Natarajan et al. (2013). Our Noise-Corrected Plug-in (NCPLUG) algorithm

will also solve s independent binary problems, but will do so in a way that illustrates in this simple

setting the essence of the approach that we will build on for more complex settings later.
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Under the Hamming loss, the Bayes optimal classifier requires only the s Bayes-sufficient statistics

qj(x) = P(Yj = 1|x) ∀j ∈ [s] .

Indeed, the Bayes optimal classifier for LHam can be written as

h∗j (x) = 1(qj(x) ≥ 1
2) ∀j ∈ [s] .

The key idea then is to estimate the statistics qj(x), associated with the clean distributionD, reliably

from the noisy training sample S̃. For this, we use a very simple approach. In particular, we first

apply a standard binary CPE learner to S̃ to obtain estimates of the statistics q′j(x) = P(Ỹj = 1|x)

associated with the noisy distribution D̃. Next, under the IFN model, assuming c
(j)
0,1 + c

(j)
1,0 < 1,

we have qj(x) and q′j(x) are related by q′j(x) = (1− c(j)1,0) · qj(x) + c
(j)
0,1 · (1− qj(x)), or equivalently

qj(x) =
q′j(x)−c

(j)
0,1

1−c(j)0,1−c
(j)
1,0

, ∀j ∈ [s]. Therefore, given q̂′j(x) estimated from S̃, the multi-label classifier

output by our NCPLUG algorithm is given by

ĥj(x) = 1
( q̂′j(x)− c

(j)
0,1

1− c(j)0,1 − c
(j)
1,0

≥ 1
2

)
∀j ∈ [s] .

Estimating q′(x). Our implementation of NCPLUG uses a binary logistic loss minimizer for the

CPE learner. In particular, we first learn a vector of s real-valued functions f̂ : X→Rs by minimizing

the s-dimensional convex surrogate loss ψ : Y × Rs→R+ defined as

ψ(y,u) =
s∑
j=1

ϕlog(yj , uj)

over the noisy training sample S̃. Specifically, f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)) for a suitable

class of real-valued vector functions F ⊆ {f : X→Rs}. The estimated statistics are then given by

q̂′j(x) = γ−1
log(f̂j(x)). Detailed pseudocode is in Section B.1.
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6.5.2. F1-measure under General CCN: NCEFP Algorithm

Next, we consider multi-label learning with F1-measure under general class-conditional noise (CCN).

In this section, we will build on the Exact F -measure Plug-in (EFP) algorithm of Dembczynski et al.

(2013), which is consistent for multi-label F1-measure in the non-noisy setting. We will develop a

noise-corrected version of this algorithm that we will call the Noise-Corrected Exact F-measure Plug-

in (NCEFP) algorithm. Again, our approach will be to reliably estimate suitable Bayes-sufficient

statistics q(x) associated with the clean distribution D from the noisy training sample.

As shown in Dembczynski et al. (2013), for the multi-label F1-measure, the following s2+1 statistics

are Bayes-sufficient:

q0(x) = P(∥Y∥1 = 0|x) ; qjk(x) = P(Yj = 1, ∥Y∥1 = k|x) ∀j, k ∈ [s] .

In particular, under the F1-measure, the Bayes optimal classifier is given by

h∗(x) ∈ argmin
ŷ∈Y

{
1− q0(x) · 1(∥ŷ∥1 = 0)−

s∑
j=1

s∑
k=1

qjk(x) ·
2 · ŷj

k + ∥ŷ∥1

}
.

For the standard (non-noisy) setting, Dembczynski et al. (Dembczynski et al., 2013) showed how to

estimate the s2 statistics {qjk(x) : j, k ∈ [s]} by solving s multiclass ((s+ 1)-class) CPE problems,

and statistic q0(x) by solving a binary CPE problem. Here we develop noise-corrected versions of

these procedures for estimating these statistics from the noisy training sample.

Let us first define a matrix A ∈ [0, 1](s
2+1)×|Y| as follows:

a0,y = 1(∥y∥1 = 0) ; ajk,y = 1(∥y∥1 = k) · yj ∀j, k ∈ [s] .

Then it can be seen that the Bayes-sufficient statistics above can be written as q(x) = Aη(x).

Under the general CCN model, the clean class probability function η(x) is related to the noisy class

probability function η̃(x) via η̃(x) = C⊤η(x). Therefore, if C is invertible, then the desired statistics

q(x) can be written in terms of η̃(x) as q(x) = A(C⊤)−1η̃(x) = Ãη̃(x), where Ã = A(C⊤)−1.
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Now unlike the standard (non-noisy) setting, where the statistics q(x) expressed directly in terms of

η(x) naturally decomposed into a set of multiclass (and one binary) CPE problems, these statistics

expressed in terms of η̃(x) no longer naturally decompose this way. Nevertheless, we will show how

to estimate these statistics from the noisy training sample by solving s suitably weighted multiclass

CPE problems together with a suitably weighted binary CPE problem. To do so, we will use a

shifted and scaled matrix Ã′ to estimate related statistics q′(x) and then factor back in the scaling

and shifting when using the estimated statistics to make a final prediction.23 Towards this, define

ãmin = min(miny ã0,y,miny,jk ãjk,y) and ãmax = max(maxy ã0,y,maxy,jk ãjk,y), and let the entries

of Ã′ ∈ [0, 1](s
2+1)×|Y| be defined as

ã′0,y =
ã0,y − ãmin

ãmax − ãmin
∈ [0, 1] ; ã′jk,y =

ãjk,y − ãmin

s · (ãmax − ãmin)
∈ [0, 1] ∀j, k ∈ [s] .

It can be verified that
∑s

k=1 ã
′
jk,y ≤ 1 for all j ∈ [s],y ∈ Y. Next, define q′(x) = Ã′η̃(x).

Then, for each j ∈ [s], we set up a weighted multiclass ((s + 1)-class) CPE problem with weights

(ã′j1,y, ..., ã
′
js,y, (1−

∑s
k=1 ã

′
jk,y)) to estimate the statistics q′j1(x), ..., q

′
js(x), and a weighted binary

CPE problem with weights (ã′0,y, (1− ã′0,y)) to estimate q′0(x). Finally, given q̂′(x) estimated in this

way from the noisy training sample, our NCEFP algorithm outputs the multi-label classifier24

ĥ(x) = argmin
ŷ∈Y

{
1− [(ãmax − ãmin) · q̂′0(x) + ãmin] · 1(∥ŷ∥1 = 0)

−
s∑
j=1

s∑
k=1

[s · (ãmax − ãmin) · q̂′jk(x) + ãmin] ·
2 · ŷj

k + ∥ŷ∥1

}
.

Estimating q′(x). Our implementation of NCEFP uses weighted multiclass and binary logistic

loss minimizers for the weighted CPE learners. In particular, we first learn a vector of s2 + 1

real-valued functions f̂ : X→Rs2+1 by minimizing the (s2 + 1)-dimensional convex surrogate loss

23Entries of Ã cannot be used directly as they may be negative and/or not add up to one.
24The combinatorial optimization problem involved in producing ĥ(x) has a similar functional form as its non-noisy

counterpart, and for Y = {0, 1}s, it can be solved in order O(s3) time using a procedure of Dembczynski et al. (2011)
(if the label vectors are sparse with at most K nonzero entries each, then the optimization can be solved in order
O(sK2) time; a special case of this scenario is discussed in Section 6.7 and Section B.3).
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ψ : Y × Rs2+1→R+ defined as

ψ(y,u) = ã′0,y · ϕlog(1, u0) + (1− ã′0,y) · ϕlog(0, u0)+
s∑
j=1

[ s∑
k=1

ã′jk,yϕmlog(k, (uj1, ..., ujs)) + (1−
s∑

k=1

ã′jk,y)ϕmlog(s+ 1, (uj1, ..., ujs))
]

over the noisy sample S̃. Specifically, f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)) for a suitable class of

real-valued vector functions F ⊆ {f : X→Rs2+1}. The estimated statistics are then given by

q̂′0(x) = γ−1
log(f̂0(x)) and q̂′jk(x) =

(
γ−1

mlog(f̂j1(x), ..., f̂js(x))
)
k
. Detailed pseudocode is in Section B.1.

6.5.3. General Low-rank Multi-label Losses under General CCN: NCOC Algorithm

We now consider multi-label learning with a general low-rank loss matrix (encompassing the Ham-

ming loss and F1-measure as special cases) under general class-conditional noise (CCN). In this

section, we will build on the Output Coding (OC) algorithm of Zhang et al. (2020) which was de-

veloped for the multi-label F1-measure in the standard (non-noisy) setting and was shown to be

consistent for that setting. The approach applies more broadly to low-rank loss matrices in general,

and we will develop a noise-corrected version of this algorithm for the general setting that we will

call the Noise-Corrected Output Coding (NCOC) algorithm. Again, our approach will be to reliably

estimate suitable Bayes-sufficient statistics q(x) associated with the clean distribution D from the

noisy training sample. In the special cases of Hamming loss and F1-measure, these statistics are

the same as those discussed in Section 6.5.1 and Section 6.5.2, but the estimation procedures will

be different.

Output coding is a general term that refers to the solution of multiclass or multi-label prob-

lems by decomposing them into a set of binary prediction problems (Dietterich and Bakiri, 1995;

Allwein et al., 2000; Ramaswamy et al., 2014). The OC algorithm of Zhang et al. (2020) breaks

down a multi-label prediction problem with a low-rank loss into a small number of weighted bi-

nary CPE problems. In particular, consider a multi-label loss matrix L that can be written as

L = A⊤B + 1t⊤ for some A ∈ [0, 1]r×|Y|,B ∈ Rr×|Y|, t ∈ R|Y| (so that rank(L) ≤ r + 1). Then it
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turns out that the r-dimensional vector statistic q(x) defined as

q(x) = Aη(x)

is Bayes-sufficient for L. Indeed, the Bayes optimal classifier for L can be written as

h∗(x) ∈ argmin
ŷ∈Y

ℓ⊤ŷη(x) = argmin
ŷ∈Y

b⊤
ŷ (Aη(x)) + tŷ = argmin

ŷ∈Y
b⊤
ŷq(x) + tŷ .

In the standard (non-noisy) setting, the OC algorithm of Zhang et al. (2020) estimates these statis-

tics q(x) by decomposing the multi-label problem into r weighted binary CPE problems. Again, we

will develop noise-corrected versions of these procedures to estimate the statistics from the noisy

training sample.

As before, under the general CCN model, we have η̃(x) = C⊤η(x). Therefore, if C is invertible,

then q(x) can be written in terms of η̃(x) as q(x) = Ãη̃(x), where Ã = A(C⊤)−1. Again, in order

to set up suitably weighted binary CPE problems that can allow us to estimate these statistics from

the noisy training sample, we will use a shifted and scaled matrix Ã′ to estimate related statistics

q′(x), and then factor back in the scaling and shifting when making a final prediction. Towards

this, define ãmin = miny,j ãj,y and ãmax = maxy,j ãj,y, and define the entries of Ã′ ∈ [0, 1]r×|Y| as

ã′j,y =
ãj,y − ãmin

ãmax − ãmin
∈ [0, 1] ∀j ∈ [r] .

We note that scaling for the terms ã′j,y is different from that used for the NCEFP algorithm in Section

6.5.2, as now we are decomposing the problem into r binary problems rather than multiclass. Next,

define q′(x) = Ã′η̃(x). Then, for each j ∈ [r], we set up a weighted binary CPE problem with

weights (ã′j,y, (1− ã′j,y)) to estimate q′j(x). Finally, given estimated statistics q̂′(x) estimated in this

way from the noisy training sample, our NCOC algorithm outputs the multi-label classifier

ĥ(x) = argmin
ŷ∈Y

{
tŷ +

r∑
j=1

[(ãmax − ãmin) · q̂′j(x) + ãmin] · bj,ŷ
}
.
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Estimating q′(x). Our implementation of NCOC uses weighted binary logistic loss minimizers for

the weighted CPE learners. In particular, we first learn a vector of r real-valued functions f̂ : X→Rr

by minimizing the r-dimensional convex surrogate loss ψ : Y × Rr→R+ defined as

ψ(y,u) =
r∑
j=1

(
ã′j,yϕlog(1, uj) + (1− ã′j,y)ϕlog(0, uj)

)

over S̃. Specifically, f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)) for a suitable class of functions F ⊆ {f :

X→Rr}. The estimated statistics are then given by q̂′j(x) = γ−1
log(f̂j(x)). Detailed pseudocode is in

Section B.1.

The above approach can be applied to any low-rank loss matrix that can be written in the form

described above, including both Hamming loss and F1-measure as discussed below.

Example 6.1 (Low-rank decomposition for LHam). The Hamming loss in Eq. (6.1) can be

written as

ℓHam
y,ŷ =

1

s

s∑
j=1

1(ŷj ̸= yj) =

s∑
j=1

1− 2ŷj
s

yj +

s∑
j=1

ŷj
s
. (6.3)

In other words, we have LHam = A⊤B+ 1t⊤ where A ∈ [0, 1]s×|Y| with aj,y = yj, B ∈ Rs×|Y| with

bj,ŷ =
1−2ŷj
s , and t ∈ R|Y| with tŷ =

∑s
j=1

ŷj
s = 1

s∥ŷ∥1. Thus, for Hamming loss, r = s and the

statistics q(x) = Aη(x) ∈ [0, 1]s turn out to be the same as in Section 6.5.1.

Example 6.2 (Low-rank decomposition for LF1). The F1-measure loss in Eq. (6.2) can be

written as

ℓF1

y,ŷ = 1− 1(∥y∥1 = 0) · 1(∥ŷ∥1 = 0)−
s∑
j=1

s∑
k=1

1(∥y∥1 = k) · yj ·
2 · ŷj

k + ∥ŷ∥1
. (6.4)

In other words, we have LF1 = A⊤B+ 1t⊤ where A ∈ [0, 1](s
2+1)×|Y| with a0,y = 1(∥y∥1 = 0) and

ajk,y = 1(∥y∥1 = k) · yj, B ∈ R(s2+1)×|Y| with b0,ŷ = −1(∥ŷ∥1 = 0) and bjk,ŷ = − 2·ŷj
k+∥ŷ∥1 , and

t ∈ R|Y| with tŷ = 1. Thus, for F1-measure, r = s2 + 1 and the statistics q(x) = Aη(x) ∈ [0, 1]s
2+1

149



turn out to be the same as in Section 6.5.2.

Remark on computation for NCEFP and NCOC, and fast NCOC-Ham-IFN algorithm.

We note that the NCEFP and NCOC algorithms above both require storing the noise matrix C and

computing (C⊤)−1. For a general multi-label noise matrix C, this can be prohibitively expensive.

Therefore, these algorithms are practical when either the number of tags s is small or the noise

matrix C is suitably structured. We describe one such structure, namely the STSN model, in

Section 6.7, that enables fast computation. We also note that under the previously well-studied

IFN model, noise matrices C – even though relatively simple with few parameters – are (to our

knowledge) expensive to invert. For the special case of Hamming loss under IFN, in Section B.1.4,

we present an alternative faster noise-corrected output coding algorithm – that we call NCOC-Ham-

IFN – that decomposes the problem of estimating statistics q(x) into a different set of s binary CPE

problems obtained using a different coding matrix Ã′′ that does not require inverting C⊤.

6.6. Regret Transfer Bounds and Consistency

Below we provide quantitative regret transfer bounds for each of the three algorithms above that

upper bound the target L-regret of the learned classifier ĥ under the clean distribution D in terms

of the surrogate ψ-regret (defined below) of the associated real-valued vector function f̂ obtained

by minimizing the corresponding convex surrogate loss ψ (defined for each algorithm in the cor-

responding section above) under the noisy distribution D̃. In each case, if the surrogate loss ψ is

minimized over a suitably rich function class, then ψ-regret under D̃ converges in probability to 0

as m→∞. Therefore, this also implies Bayes consistency of these algorithms for the target loss L

under D.

ψ-generalization error and ψ-regret. For any positive integer r, an r-dimensional surrogate

loss ψ : Y × Rr→R+ and vector-valued function f : X→Rr, define the ψ-generalization error of f

under the noisy distribution D̃ as erψ
D̃
[f ] = E

(X,Ỹ)∼D̃[ψ(Ỹ, f(X))], and its ψ-regret of under D̃ as

regretψ
D̃
[f ] = erψ

D̃
[f ]− inff ′:X→Rr erψ

D̃
[f ′].

Theorem 6.1 (Regret bound for NCPLUG). Consider Hamming loss LHam (Eq. (6.1)) under
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IFN model. Assume c
(j)
0,1 + c

(j)
1,0 < 1 for all j ∈ [s]. Let D be any distribution on X × Y with

corresponding noisy distribution D̃. Suppose NCPLUG (Section 6.5.1) is run with noisy training

sample S̃ (in which examples are sampled i.i.d. from D̃), and let ψ, f̂ , ĥ be as defined in Section

6.5.1. Then we have

regretL
Ham

D [ĥ] ≤ 1√
s
max
i

1

1− c(i)0,1 − c
(i)
1,0

√
2regretψ

D̃
[̂f ] .

Proof. See Section B.2.1.

Theorem 6.2 (Regret bound for NCEFP). Consider F -measure LF1 (Eq. (6.2)) under the

general CCN model. Assume noise matrix C is invertible. Let D be any distribution on X × Y

with corresponding noisy distribution D̃. Suppose NCEFP (Section 6.5.2) is run with noisy training

sample S̃ (in which examples are sampled i.i.d. from D̃). Let ψ, f̂ , ĥ be as defined in Section 6.5.2,

and let A ∈ [0, 1](s
2+1)×|Y|, B ∈ R(s2+1)×|Y|, and t ∈ R|Y| be as defined in Example 6.2. Then we

have

regretL
F1

D [ĥ] ≤ 4smax
ŷ
∥bŷ∥2 · ∥A∥1∥(C⊤)−1∥1

√
2regretψ

D̃
[̂f ] .

Proof. See Section B.2.2.

Theorem 6.3 (Regret bound for NCOC). Consider a general low-rank loss matrix L written

as L = A⊤B + 1t⊤ for some A ∈ [0, 1]r×|Y|,B ∈ Rr×|Y|, t ∈ R|Y|, under the general CCN model.

Assume noise matrix C is invertible. Let D be any distribution on X × Y with corresponding

noisy distribution D̃. Suppose NCOC (Section 6.5.3) is run with noisy training sample S̃ (in which

examples are sampled i.i.d. from D̃), and let ψ, f̂ , ĥ be as defined in Section 6.5.3. Then we have

regretLD[ĥ] ≤ 2max
ŷ
∥bŷ∥2 · ∥A∥1∥(C⊤)−1∥1

√
2regretψ

D̃
[̂f ] .

Proof. See Section B.2.3.
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The quantity ∥(C⊤)−1∥1 can be viewed as capturing the amount of label noise in C. The bounds

therefore suggest that as the amount of label noise increases (larger ∥(C⊤)−1∥1), the sample size

needed to reach a given level of performance generally increases.

In Section B.2, we provide proofs of more general versions of the above theorems that allow one to

use an estimated noise matrix Ĉ when the true noise matrix C may be unknown.

6.7. Similar-Tag Switching Noise (STSN) model

As noted earlier, general CCN models can require too many (up to orderO(4s)) parameters and make

computation prohibitive. Here we propose a new family of structured multi-label noise models that

we term Similar-Tag Switching Noise (STSN) models; STSN models are a special case of CCN that

require fewer parameters and enable fast computation, and moreover, unlike IFN, they also capture

some correlations among tags. The idea behind STSN models is that tags are partitioned into

several groups, each of which contains similar/related tags, and independently within each group,

an active tag can be switched with another tag in the group (i.e., similar tags can be switched with

each other).

Specifically, let the set of s tags T = [s] be partitioned into K (K ≤ s) groups of tags G1, ..., GK ,

such that the tags within any group are similar/related to each other (for example, G1 could contain

tags lion, tiger; G2 could contain tags river, lake; etc.). We will assume that within each group,

at most one tag is active in any label vector y; this gives |Y| =
∏K
k=1(1+ |Gk|)≪ 2s, and ∥y∥1 ≤ K

for all y ∈ Y (indeed, this is in line with many real multi-label datasets in which labels are very

sparse). The STSN model involves K noise parameters: σk ∈ [0, 1] for k ∈ [K]. Specifically, for a

label y ∈ Y ⊆ {0, 1}s, let yGk
∈ {0, 1}|Gk| denote the sub-label restricted to tags in Gk. Recall that

∥yGk
∥ ≤ 1. For groups Gk with |Gk| ≥ 2, the noise process within Gk is as follows: if yGk

= 0,

then ỹGk
= 0; if yGk

̸= 0, then with probability σk, yGk
is changed to ỹGk

by switching its (only)

active tag with one of the remaining |Gk|−1 non-active tags chosen uniformly at random, and with

probability 1 − σk, ỹGk
is the same as yGk

. For groups Gk with |Gk| = 1, yGk
is flipped to the

opposite with probability σk. The above noise process is applied independently to each group. (For

the special case when there are K = s groups each of size one, the STSN model reduces to the
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symmetric IFN model studied by Kumar et al. (2020), but in the general case, it can capture much

richer structure.) Section B.3 summarizes various small changes/simplifications to our algorithms

under STSN.

Example 6.3. Consider a dataset of images that need to be annotated with various object tags. The

tags can be grouped into categories like animals, vehicles, plants, and many others. In this case, it

is more likely to confuse between tags within the same group (e.g., confusing a Lion for a Tiger)

rather than confusing tags from different groups (e.g., confusing a Lion for a Car). Specifically, for

a given image with Lion being an active tag in the true/clean label, after the noise process, Tiger

may become an active tag in the noisy label instead; but Lion cannot be switched to Car.

Example 6.4 (Noise matrix calculation). Consider T = {1, 2, 3} with groups G1 = {1, 2} and G2 =

{3}. Let σ1 = 0.2 and σ2 = 0.1. Then C(1) and C(2) can be calculated as below. Then, for example,

P(Ỹ = [1, 0, 1] |Y = [0, 1, 0]) = P(ỸG1 = [1, 0] |YG1 = [0, 1]) · P(ỸG2 = [1] |YG2 = [0]) = 0.02.

Other entries of C can be calculated similarly.

C(1) =

00 01 10


00 1 0 0

01 0 0.8 0.2

10 0 0.2 0.8

, C(2) =

0 1 0 0.9 0.1

1 0.1 0.9

.

6.8. Experiments

6.8.1. Synthetic Data: Sample Complexity Behavior

We tested the sample complexity behavior of our algorithms.

F1-measure under STSN. We generated a multi-label dataset with instances x in X = R100 and

s = 10 tags partitioned into K = 5 groups G = {{1, 2, 3}, {4, 5, 6}, {7, 8}, {9}, {10}}, so |Y| = 192

and ∥y∥1 ≤ K = 5 ∀y ∈ Y (details in Section B.4). We then added label noise using 4 single-

parameter STSN noise matrices respecting this partition: specifically, we let σ1, ..., σ5 = σ, and
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Figure 6.4: Sample complexity behavior of NCOC-F1 and NCEFP on synthetic multi-label data
for 4 noise parameters under the STSN model. Performance measure is F1-measure (specified as a
gain). For both algorithms, as noise parameter σ increases, the sample size needed to reach a given
level of performance generally increases.

chose 4 values of σ: 0.2, 0.25, 0.3, 0.35. We ran NCOC-F1 and NCEFP (with a linear function class)

to learn multi-label classifiers from increasingly large noisy training samples generated in this way,

and measured the F1-measure on a test set of 10, 000 clean data points. The results are shown in

Figure 6.4. We see that, as suggested by our regret bounds, as noise parameter σ increases, the

sample size needed to reach a given level of performance generally increases.

Hamming loss under IFN. We generated a multi-label dataset with instances x in X = R100

and s = 8 tags (details in Section B.4). We then added label noise using 3 sets of IFN noise rates:

specifically, we let c(j)1,0 = c1,0 and c
(j)
0,1 = c0,1 for all j, and chose 3 pairs of values of (c0,1, c1,0):

(0.1, 0.05), (0.15, 0.2), (0.3, 0.3). We ran all algorithms (with a linear function class) to learn multi-

label classifiers from increasingly large noisy training samples generated in this way, and measured

the Hamming loss on a test set of 10, 000 clean data points. The results are shown in Figure 6.5. We

see that, as suggested by our regret bounds, as the overall noise increases, the sample size needed

to reach a given level of performance generally increases.

6.8.2. Real Data: Comparison with Other Methods

Next, we evaluated our algorithms on two real multi-label datasets: Mediamill and Multi-MNIST

(Snoek et al., 2006; Sun, 2019).

Mediamill dataset. The original Mediamill dataset has 30,993 training examples and 12,914 test

examples with 101 tags, and the images have been processed into 120 features (Snoek et al., 2006).

We selected a subset of 17 tags that contains naturally groupable tags, and divided them into 7
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Figure 6.5: Sample complexity behavior of NCPLUG, NCOC-Ham, NCOC-Ham-IFN, and CCMN
on synthetic multi-label data for 3 pairs of noise parameters under the IFN model. Performance
measure is Hamming loss. For NCPLUG, NCOC-Ham and NCOC-Ham-IFN algorithms, as the
overall noise increases, the sample size needed to reach a given level of performance generally
increases.

groups: { {Duo-anchor, Anchor}, {People, People marching, People walking}, {Split screen,

Screen}, {Sky, Cloud}, {Religious leader, Monologue}, {Court, Meeting}, {Tower, Government

building, Urban, Building} }. (See also Figure 6.6 for visual impressions.) For consistency with

the STSN model assumption, we removed instances that have more than one active tag in any

group; we also removed instances that do not have any active tag among the 17 tags. Our modified

Mediamill dataset has 20,141 training examples and 7,737 test examples with 17 tags.

Hamming loss under IFN. For IFN, we let c(j)1,0 = c1,0 and c(j)0,1 = c0,1 for all j, and chose noise pa-

rameters of the form (c0,1, c1,0). We compared our NCPLUG and NCOC-Ham-IFN algorithms with

CCMN (Xie and Huang, 2023) and basic OC-Ham/BR (Zhang and Zhou, 2014). All algorithms

were trained to learn linear models with regularization (details in Section B.4). The results are
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Figure 6.6: Examples of the selected 17 tags in Mediamill dataset. Pictures were taken from
Snoek et al. (2006).

shown in Table 6.1. As seen, our NCPLUG and NCOC-Ham-IFN algorithms generally outperform

other baselines.

Table 6.1: Hamming loss on (modified) Mediamill data with IFN model (lower values are better).
Performance values are in %, and are reported as Mean±SEM over five random trials. Noise level
is 1

m

∑m
i=1 1(yi ̸= ỹi).

Noise Noise NCPLUG NCOC-Ham-IFN CCMN OC-Ham/BRparameter (c0,1, c1,0) level (%)
(0.2,0.1) 97.34 7.74±0.0 7.74±0.0 7.91±0.09 7.66±0.0
(0.1,0.2) 85.62 7.73±0.0 7.73±0.0 7.77±0.0 7.98±0.0
(0.4,0.15) 99.96 7.79±0.0 7.79±0.0 8.09±0.07 11.75±0.01
(0.15,0.4) 96.17 7.8±0.0 7.8±0.0 8.03±0.07 8.32±0.0
(0.35,0.2) 99.86 7.8±0.0 7.8±0.0 8.17±0.07 8.65±0.01
(0.2,0.35) 98.32 7.82±0.0 7.82±0.0 8.11±0.07 8.23±0.0
(0.45,0.25) 99.99 7.86±0.04 7.86±0.04 8.28±0.04 15.44±0.04
(0.25,0.45) 99.48 7.9±0.0 7.9±0.0 8.29±0.02 8.33±0.0

Hamming loss and F1-measure under STSN. For STSN, we used single-parameter noise ma-

trices respecting the partition into K = 7 groups described above, with σ1, ..., σ7 = σ. We compared

our NCOC-Ham algorithm with basic OC-Ham/BR (Zhang and Zhou, 2014), as well as our NCOC-

F1 and NCEFP algorithms with basic OC-F1 (Zhang et al., 2020) and EFP (Dembczynski et al.,

2013). All algorithms were trained to learn linear models with regularization (details in Section

B.4). The results are shown in Table 6.2 and Table 6.3. Again, our noise-corrected algorithms

generally outperform other baselines.

Multi-MNIST dataset. We started with the TripleMNIST dataset (each image contains 3 digits;
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Table 6.2: Hamming loss on (modified) Mediamill data with STSN model (lower values are better).
Performance values are in %, and are reported as Mean±SEM over five random trials. Noise level
is 1

m

∑m
i=1 1(yi ̸= ỹi).

Noise Noise NCOC-Ham OC-Ham/BRparameter (σ) level (%)
0.05 6.61 7.65±0.0 7.72±0.0
0.1 13.47 7.66±0.0 7.84±0.0
0.15 19.98 7.68±0.0 7.99±0.0
0.2 26.31 7.68±0.0 8.09±0.0
0.25 32.36 7.69±0.0 8.18±0.0
0.3 38.18 7.68±0.0 8.24±0.0
0.35 43.52 7.65±0.0 8.29±0.0
0.4 49.01 7.65±0.0 8.31±0.0
0.45 53.97 7.64±0.0 8.33±0.0
0.55 63.67 7.99±0.03 8.35±0.0
0.6 68.21 7.75±0.0 8.37±0.0
0.65 72.48 7.89±0.01 8.4±0.0
0.7 76.87 7.8±0.08 8.47±0.0

see Figure 6.7) in the Multi-MNIST repository and applied the following data processing steps.

Figure 6.7: Some examples in TripleMNIST. Pictures were taken from https://github.com/
shaohua0116/MultiDigitMNIST.

The original TripleMNIST has 1,000 images for each of 1,000 classes (000, 001, ..., 999), with feature

dimension 84× 84 = 7, 056. We sampled 100 images for each class. For each instance x, we created

a label vector y ∈ {0, 1}10 in which yj = 1 if digit j − 1 is present in x, and 0 otherwise. Motivated

by the noise model in Patrini et al. (2017), we divided the 10 tags into 5 groups: { {2, 7, 1}, {5,

6}, {3, 8}, {0, 9}, {4} }. For consistency with the STSN model assumption, we removed instances

that have more than one active tag in any group. We did not change the features in this process.
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Table 6.3: F1-measure on (modified) Mediamill data with STSN model (higher values are better).
Performance values are in %, and are reported as Mean±SEM over five random trials. Noise level
is 1

m

∑m
i=1 1(yi ̸= ỹi).

Noise Noise NCEFP NCOC-F1 EFP OC-F1parameter (σ) level (%)
0.05 6.61 42.11±0.03 42.5±0.02 42.01±0.02 41.87±0.02
0.1 13.47 42.29±0.03 42.86±0.02 41.84±0.03 41.76±0.04
0.15 19.98 42.33±0.03 42.88±0.01 41.7±0.02 41.61±0.04
0.2 26.31 42.22±0.02 42.95±0.02 41.42±0.01 41.44±0.03
0.25 32.36 42.0±0.02 43.06±0.03 41.28±0.03 41.19±0.05
0.3 38.18 41.36±0.03 43.03±0.03 41.01±0.02 40.96±0.03
0.35 43.52 40.78±0.03 43.15±0.04 40.94±0.02 40.85±0.03
0.4 49.01 39.04±0.09 43.1±0.05 40.81±0.03 40.71±0.03
0.45 53.97 32.67±0.05 41.56±0.38 40.48±0.04 40.27±0.04
0.55 63.67 32.23±0.1 41.53±0.39 7.43±0.03 7.47±0.03
0.6 68.21 31.81±0.03 42.83±0.06 6.57±0.03 6.57±0.03
0.65 72.48 18.36±0.12 37.15±0.26 6.59±0.01 6.57±0.01
0.70 76.87 26.93±0.1 43.19±0.4 6.48±0.02 6.44±0.01

Our modified Multi-MNIST dataset has 68,800 examples with 10 tags. Since the original data did

not come with prescribed train/test splits, we split the data into training and test sets with ratio

8 : 2. So we ended up with 55,040 training examples and 13,760 test examples.

Hamming loss under IFN. For IFN, we let c(j)1,0 = c1,0 and c
(j)
0,1 = c0,1 for all j, and chose noise

parameters of the form (c0,1, c1,0). We compared our NCPLUG and NCOC-Ham-IFN algorithms

with CCMN (Xie and Huang, 2023) and basic OC-Ham/BR (Zhang and Zhou, 2014). The results

are shown in Table 6.4. As seen, our NCPLUG and NCOC-Ham-IFN algorithms often outperform

other baselines.

Table 6.4: Hamming loss on (modified) Multi-MNIST data with IFN model (lower values are better).
Performance values are in %, and are reported as Mean±SEM over five random trials. Noise level
is 1

m

∑m
i=1 1(yi ̸= ỹi).

Noise Noise NCPLUG NCOC-Ham-IFN CCMN OC-Ham/BRparameter (c0,1, c1,0) level (%)
(0.2,0.1) 85.52 6.15±0.05 6.14±0.23 10.83±0.42 7.1±0.26
(0.1,0.2) 74.18 6.74±0.08 6.8±0.09 9.9±0.31 6.87±0.14
(0.4,0.15) 98.44 16.42±1.49 15.72±1.4 17.57±0.81 27.04±0.95
(0.15,0.4) 91.89 12.82±0.29 12.72±0.44 16.04±0.65 14.17±0.26
(0.35,0.2) 97.58 15.24±1.17 15.76±1.22 17.33±0.81 20.16±1.6
(0.2,0.35) 93.65 13.38±0.54 13.3±0.52 16.89±0.46 12.75±0.27
(0.45,0.25) 99.40 22.58±1.37 22.75±1.33 22.53±1.17 36.0±0.53
(0.25,0.45) 97.43 20.01±0.24 20.36±0.17 21.92±0.7 18.01±0.18

158



Hamming loss and F1-measure under STSN. For STSN model, we used single-parameter

noise matrices respecting the partition into K = 5 groups described above, with σ1, ..., σ5 = σ.

We compared our NCOC-Ham algorithm with basic OC-Ham/BR (Zhang and Zhou, 2014), as

well as our NCOC-F1 and NCEFP algorithms with basic OC-F1 (Zhang et al., 2020) and EFP

(Dembczynski et al., 2013). The results are shown in Table 6.5 and Table 6.6 Again, our noise-

corrected algorithms often outperform other baselines.

Table 6.5: Hamming loss on (modified) Multi-MNIST data with STSN model (lower values are
better). Performance values are in %, and are reported as Mean±SEM over five random trials.
Noise level is 1

m

∑m
i=1 1(yi ̸= ỹi).

Noise Noise NCOC-Ham OC-Ham/BRparameter (σ) level (%)
0.1 28.96 4.83±0.13 6.13±0.22
0.2 51.11 9.11±0.75 10.28±0.54
0.3 68.14 16.9±1.21 16.21±0.35
0.4 80.23 28.06±1.45 22.5±0.21
0.6 94.29 27.38±1.62 34.19±0.05
0.7 97.35 24.6±0.29 40.17±0.19

Table 6.6: F1-measure on (modified) Multi-MNIST data with STSN model (higher values are bet-
ter). Performance values are in %, and are reported as Mean±SEM over five random trials. Noise
level is 1

m

∑m
i=1 1(yi ̸= ỹi).

Noise Noise NCEFP NCOC-F1 EFP OC-F1parameter (σ) level (%)
0.1 28.96 91.14±0.16 90.13±0.18 83.77±0.24 78.33±0.37
0.2 51.11 84.98±1.24 84.95±0.52 74.16±0.23 69.61±0.35
0.3 68.14 73.55±1.47 75.74±0.35 64.61±0.77 60.71±0.6
0.4 80.23 53.64±0.81 51.48±1.83 53.87±0.6 50.97±0.79
0.6 94.29 43.82±1.72 41.93±2.02 31.82±0.24 32.57±0.47
0.7 97.35 40.91±0.74 45.75±2.0 22.52±0.14 22.88±0.26

6.9. Conclusion

We have developed three consistent noise-corrected multi-label learning algorithms (NCPLUG,

NCEFP, and NCOC), encompassing a variety of multi-label performance measures and general

class-conditional noise (CCN) models. We have provided quantitative regret transfer bounds for all

three algorithms to establish their consistency. We have also proposed a new family of structured

multi-label noise models that we term similar-tag switching noise (STSN) models; STSN models are

a special case of CCN that require fewer parameters and enable fast computation, and moreover,
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unlike IFN, they also capture some correlations among tags. Our experiments have confirmed the

effectiveness of our algorithms in correcting for multi-label noise. Future work includes developing

ways to estimate STSN models from noisy data, and exploring the design of other structured noise

models that could be suitable for multi-label settings.
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CHAPTER 7

COMPLEX PERFORMANCE MEASURE AND COMPLEX LEARNING SETTING:

MULTICLASS LEARNING FROM NOISY LABELS FOR NON-DECOMPOSABLE

PERFORMANCE MEASURES

Complex Label Space
Complex Learning
Setting

Complex Performance Measure

⋆ This work

Figure 7.1: Position of Multiclass Learning from Noisy Labels for Non-decomposable Performance
Measures in the thesis.

This chapter was previously published as Mingyuan Zhang and Shivani Agarwal. Multiclass learning

from noisy labels for non-decomposable performance measures. In International Conference on

Artificial Intelligence and Statistics 2024, AISTATS 2024, volume 238 of Proceedings of Machine

Learning Research, pages 2170–2178. PMLR, 2024. As the sole first author, I developed all the

results (both theoretical and experimental) in this chapter.

In this chapter, we start our discussion of the third dimension of complexities: complex perfor-

mance measures. We focus on the intersection between complex performance measures and com-

plex learning settings. We show how to design consistent noise-corrected algorithms for multiclass
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non-decomposable performance measures in the presence of label noise.

7.1. Background of Complex Performance Measure

Complex performance measures, also known as non-decomposable performance measures, play a

crucial role in evaluating the performance of machine learning models in scenarios where standard

performance measures like the 0-1loss or cost-sensitive losses are insufficient to capture the nuances

of the problem at hand. These measures are typically nonlinear functions of the confusion matrix

of a classifier, which represents the predictions of a classifier compared to the ground truth labels.

The complexity of these performance measures arises from their intricate calculations, which require

taking into account dependencies or interactions between different aspects of the predictions. Unlike

the 0-1loss or cost-sensitive losses that can be expressed as the expectation or sum of losses on

individual examples, non-decomposable measures cannot be expressed as the expectation or sum of

losses on individual examples.

Several non-decomposable performance measures are commonly used in machine learning:

Micro F1 score: The Micro F1 score combines precision and recall into a single metric, providing a

balanced evaluation of a classifier’s performance. It is a widely used metric in information retrieval.

Jaccard measure: Also known as the intersection over union (IoU), the Jaccard measure assesses

the similarity between the predicted and true sets by computing their overlapping area divided by

their union. It is commonly used in tasks like image segmentation or object detection.

H-mean, G-mean, and Q-mean: The H-mean , G-mean , and Q-mean are often used in imbal-

anced classification problems to evaluate a classifier’s performance.

Area under the ROC curve (AUC-ROC): The AUC-ROC measures the trade-off between

true positive rate and false positive rate across different classification thresholds. It provides a

comprehensive evaluation of a classifier’s performance across all possible decision boundaries.

Area under the Precision-Recall curve (AUC-PR): The AUC-PR summarizes the trade-off
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between precision and recall of a classifier by computing the area under the precision-recall curve.

Designing machine learning algorithms to learn classifiers that optimize these non-decomposable

performance measures can be challenging due to the need to account for dependencies and inter-

actions between the predictions of individual instances. Specialized techniques and optimization

approaches are often required.

7.2. Background of Complex Performance Measure and Learning Setting

We have seen both complex performance measures and complex learning settings. In real world,

there are problems that pertain both complexities. Such problems require tackling both complexi-

ties, necessitating a broad toolbox of methods and algorithms. Here are a few examples of real-world

machine learning problems that involve both complex performance measures and complex learning

settings:

Information Retrieval: In the field of Information Retrieval (IR), machine learning models are

trained to rank documents based on their relevance to a query. This is a complex learning setting

because the labels (relevance scores) are often noisy, and the relevance of a document can depend on

the relevance of other documents. Furthermore, the performance of IR systems is often evaluated

using complex measures like micro and macro F1 measures, which cannot be decomposed into a

sum of losses over individual instances.

Medical Diagnosis: Machine learning in healthcare often involves complex learning settings and

performance measures. Healthcare datasets often suffer from class imbalance (where some diseases

are more common than others), noisy labels (due to inconsistencies in diagnostic criteria), and

missing data (due to incomplete patient records). Further, performance measures like the area

under the ROC curve (AUC-ROC) are often used, as it is essential to balance the trade-off between

false positives and false negatives. For example, in cancer detection, failing to detect a positive

case (false negative) can be detrimental, but so can wrongly diagnosing a patient with cancer (false

positive).

Object Detection in Images: Object detection tasks in computer vision often involve both com-
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plex learning settings and performance measures. The datasets used can be noisy and imbalanced,

and semi-supervised or active learning techniques can be necessary when labeled data is scarce or

expensive to obtain. Moreover, the performance of object detectors is commonly evaluated using

the Mean Average Precision or the Intersection over Union, which are complex measures.

These examples illustrate the need for machine learning algorithms and systems that can handle

both complex performance measures and complex learning settings.

7.3. Introduction

7.3.1. Background and Our Contributions

In many machine learning problems, the labels provided with the training data may be noisy. This

can happen due to a variety of reasons, such as sensor measurement errors, human labeling errors,

and data collection errors among others. Therefore, there has been much interest in recent years in

learning good classifiers from data with noisy labels (Frénay and Verleysen, 2014; Song et al., 2023;

Han et al., 2020). Most work has focused on learning from noisy labels for standard loss-based

performance measures; these include both the 0-1loss and more general cost-sensitive losses, all of

which are linear functions of the confusion matrix of a classifier. However, many machine learning

problems require using non-decomposable performance measures which cannot be expressed as the

expectation or sum of a loss on individual examples; these are general nonlinear functions of the

confusion matrix, and include for example the H-mean, Q-mean and G-mean in class imbalance

settings (Sun et al., 2006; Kennedy et al., 2009; Lawrence et al., 2012; Wang and Yao, 2012), and

the Micro F1 in information retrieval (Manning et al., 2008; Kim et al., 2013). In this work, we

design algorithms to learn from noisy labels for two broad classes of multiclass non-decomposable

performance measures, namely, monotonic convex and ratio-of-linear, which encompass all the above

examples.

The main challenge in learning from noisy labels is to design algorithms which, given training data

with noisy labels, can still learn accurate classifiers w.r.t. the clean/true distribution for a given

target performance measure. For loss-based (linear) performance measures, previous works have
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Table 7.1: Position of Our Work Relative to Previous Work on Consistent Learning Under CCN
Model

Performance Mea-
sures

Standard (Non-noisy) Set-
ting

Noisy Setting Under CCN
Model

Loss-based (linear) Many algorithms including sur-
rogate risk minimization algo-
rithms

Many noise-corrected algo-
rithms (Natarajan et al., 2013;
van Rooyen and Williamson, 2017;
Patrini et al., 2017; Zhang et al.,
2021)

Monotonic convex Frank-Wolfe based method This work
(Narasimhan et al., 2015)

Ratio-of-linear Bisection based method This work
(Narasimhan et al., 2015)

designed Bayes consistent algorithms so that, when given sufficient noisy training data, their perfor-

mance converges to the Bayes optimal performance w.r.t. the clean distribution (Natarajan et al.,

2013; Scott et al., 2013; Scott, 2015; Menon et al., 2015; Liu and Tao, 2016; Patrini et al., 2016;

Ghosh et al., 2017; van Rooyen and Williamson, 2017; Patrini et al., 2017; Natarajan et al., 2017;

Wang et al., 2018; Liu and Guo, 2020; Zhang et al., 2021; Li et al., 2021). In this work, we provide

similarly Bayes consistent noise-corrected algorithms for multiclass monotonic convex and ratio-

of-linear performance measures, under the widely studied family of class-conditional noise (CCN)

models. Our work builds on the Frank-Wolfe and Bisection based methods of Narasimhan et al.

(2015), which were proposed for the standard (non-noisy) setting. Table 7.1 summarizes the position

of our work relative to other consistent algorithms under the CCN model.

Our key contributions include the following:

• Algorithms: We develop noise-corrected versions of the Frank-Wolfe and Bisection based

algorithms for the families of monotonic convex and ratio-of-linear performance measures,

respectively.

• Theory: While the noise corrections we introduce are fairly intuitive, establishing the cor-

rectness of the resulting algorithms is not trivial. We provide regret (excess risk) bounds

for our algorithms, establishing that even though they are trained on noisy data, they are
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Bayes consistent in the sense that their performance converges to the optimal performance

w.r.t. the clean (non-noisy) distribution. The bounds quantify the effect of label noise on the

sample complexity. We also provide extended regret bounds that quantify the effect of using

an estimated noise matrix.

• Empirical validations: We provide results of experiments on synthetic data verifying the

sample complexity behavior of our algorithms, and also on real data comparing with previous

baselines.

7.3.2. Notation

For an integer n, we denote by [n] the set of integers {1, . . . , n}, and by ∆n the probability simplex

{p ∈ Rn+ :
∑n

y=1 py = 1}. For a vector a, we denote by ∥a∥p the p-norm of a, and by aj the

j-th entry of a. For a matrix A, we denote by ∥A∥p the induced matrix p-norm of A, and by

aj the j-th column vector of A. We use Ai,j to denote the (i, j)-th entry of A. In addition,

we use ∥A∥vec,p = (
∑

i,j |A
p
i,j |)1/p for the matrix analogue of the vector p-norm.25 For matrices

A,B ∈ Rn×n, we define ⟨A,B⟩ =
∑

i,j Ai,jBi,j . The indicator function is 1(·).

7.3.3. Related Work

Consistent algorithms for binary/multiclass classification for non-decomposable perfor-

mance measures in the standard (non-noisy) setting. Most work in this category has focused

on binary classification, for a variety of performance measures, including F-measure (Ye et al., 2012),

the arithmetic mean of the true positive and true negative rates (AM) (Menon et al., 2013), ratio-of-

linear performance measures (Koyejo et al., 2014; Bao and Sugiyama, 2020), and monotonic perfor-

mance measures (Narasimhan et al., 2014). Dembczynski et al. (2017) revisited consistency analysis

in binary classification for non-decomposable performance measures for two distinct settings and

notions of consistency (Population Utility and Expected Test Utility). For multiclass classification,

Narasimhan et al. (2015) developed a general framework for designing provably consistent algo-

rithms for monotonic convex and ratio-of-linear performance measures; an extended version of this

work also studies such performance measures in constrained learning settings (Narasimhan et al.,
25Note that ∥A∥1 and ∥A∥∞ in Narasimhan et al. (2015) are ∥A∥vec,1 and ∥A∥vec,∞ in our notations. We choose

to follow conventional definitions of the matrix norm in the literature instead.
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2022). Parambath et al. (2014); Koyejo et al. (2015); Natarajan et al. (2016) also designed algo-

rithms for some multiclass non-decomposable performance measures. All of these works designed al-

gorithms for standard (non-noisy) settings. Our methods, which build on Narasimhan et al. (2015),

are designed to correct for noisy labels for monotonic convex and ratio-of-linear performance mea-

sures, with provable consistency guarantees.

Consistent algorithms for binary/multiclass learning from noisy labels for the 0-1or

cost-sensitive losses. For the CCN model in binary classification, many consistent algorithms

have been proposed and analyzed (Natarajan et al., 2013; Scott et al., 2013; Menon et al., 2015;

Liu and Tao, 2016; Patrini et al., 2016; Liu and Guo, 2020). Scott et al. (2013); Scott (2015);

Menon et al. (2015); Liu and Tao (2016) also proposed consistent estimators for noise rates when

they are not known (additional assumptions required). Scott et al. (2013); Menon et al. (2015)

studied the more general mutually contaminated distributions (MCD) noise model for binary clas-

sification, and proposed consistent algorithms. Natarajan et al. (2017) studied cost-sensitive loss

functions. Progress has also been made in instance-dependent and label-dependent noise (ILN)

model (Menon et al., 2018; Cheng et al., 2020). For the multiclass CCN model, Ghosh et al. (2017);

van Rooyen and Williamson (2017); Patrini et al. (2017); Wang et al. (2018); Zhang et al. (2021);

Li et al. (2021) proposed consistent algorithms. All the methods above are designed to handle

noisy labels for loss-based performance measures; our work, on the other hand, focuses on non-

decomposable performance measures.

Consistent algorithms for binary learning from noisy labels for non-decomposable per-

formance measures. The method in Scott et al. (2013) focused on the minmax error. Menon et al.

(2015) focused mostly on the balanced error (BER) and area under the ROC curve (AUC) metrics.

Both studied the MCD model (which includes CCN model). All these results are for binary classi-

fication. Our proposed algorithms, under the CCN model, are designed for monotonic convex and

ratio-of-linear performance measures in both binary and multiclass classification settings.

Performance measures in multi-label classification and structured prediction. There

is also a line of work studying performance measures (e.g., Hamming loss and F -measure) in
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multi-label classification and structured prediction problems (Zhang and Zhou, 2014; Li et al., 2016;

Wang et al., 2017; Zhang et al., 2020), but those are distinct from (albeit related to) non-decomposable

performance measures in multiclass classification settings as considered in this work.

7.3.4. Organization

After preliminaries and background in Section 7.4, we describe our noise-corrected algorithms for

two broad classes of non-decomposable performance measures (monotonic convex and ratio-of-linear)

in Section 7.5 and Section 7.3.3, respectively. Section 7.7 provides consistency guarantees for our

algorithms in the form of regret bounds. Section 7.8 summarizes our experiments. Section 7.9

concludes this work.

7.4. Preliminaries and Background

Multiclass learning from noisy labels. Let X be the instance space, and Y be the label space.

Without loss of generality, we assume Y = [n] = {1, ..., n}. There is an unknown distribution D

over X ×Y. In a standard multiclass learning problem, the learner is given labeled examples (X,Y )

drawn from D. However, when learning from noisy labels, the learner is only given noisy examples

(X, Ỹ ), where Ỹ is the corresponding noisy label for Y . The learner’s goal is to learn a classifier

using the noisy training sample, so that its performance is good w.r.t. the clean distribution.

We consider the class-conditional noise (CCN) model (Natarajan et al., 2013;

van Rooyen and Williamson, 2017; Patrini et al., 2017), in which a label Y = y is switched

by the noise process to Ỹ = ỹ with probability P(Ỹ = ỹ|Y = y) that only depends on y (and not

on x). This noise can be fully described by a column stochastic matrix.

Definition 7.1 (Class-conditional noise matrix). The class-conditional noise matrix, T ∈ [0, 1]n×n,

is column stochastic with entries Ti,j = P(Ỹ = i|Y = j).

We assume T is invertible. In practice, T often needs to be estimated; several methods have been

developed to estimate T from the noisy sample (Xia et al., 2019; Yao et al., 2020; Li et al., 2021).

Our algorithms and theoretical guarantees work with both known T and estimated T̂.
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We can then view the noisy training examples as being drawn i.i.d. from a noisy distribution D̃

on X ×Y. Specifically, to generate (X, Ỹ ), an example (X,Y ) is firstly drawn according to D, and

then Y is switched to Ỹ according to noise matrix T.

Non-decomposable performance measure. To measure the performance of a classifier h : X →

[n], or more generally, a randomized classifier h : X → ∆n (which for a given instance x, predicts a

label y according to the probability specified by h(x)), we consider performance measures that are

general functions of confusion matrices.

Definition 7.2 (Confusion matrix). The confusion matrix of a (possibly randomized) classifier h

w.r.t. a distribution D, denoted by CD[h], has entries CDi,j [h] = P(X,Y )∼D,Y ′∼h(X)(Y = i, Y ′ = j),

where Y ′ ∼ h(X) denotes a random draw of label from distribution h(X) when h is randomized.

Definition 7.3 (Performance measure). For any function ψ : Rn×n → R+, define the ψ-performance

measure of h w.r.t. D as

Ψψ
D[h] = ψ(CD[h]) .

We adopt the convention that lower values of Ψ correspond to better performance.

The following shows this formulation of performance measure includes the common loss-based per-

formance measures (e.g., the 0-1loss and cost-sensitive losses).

Example 7.1 (L-performance measures). Consider a multiclass loss matrix L ∈ Rn×n, where Ly,ŷ

is the loss incurred for predicting ŷ when the true class is y. Then for a deterministic classifier h,

ΨL
D[h] = E(X,Y )∼D

[
LY,h(X)

]
= ⟨L,CD[h]⟩ .

In fact, loss-based performance measures are linear functions of confusion matrices. For nonlinear

ψ, ψ-performance measures are non-decomposable, i.e., they cannot be expressed as the expected

loss on a new example drawn from D. Common examples of such non-decomposable performance
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measures include Micro F1 in information retrieval (Manning et al., 2008; Kim et al., 2013), H-

mean, Q-mean and G-mean in class imbalance settings (Kennedy et al., 2009; Lawrence et al., 2012;

Sun et al., 2006; Wang and Yao, 2012), and others.26

Learning goal. Given a noisy training sample S̃ drawn according to the noisy distribution D̃, the

goal of the learner is to learn a (randomized) classifier h : X → ∆n that performs well w.r.t. D for

a pre-specified ψ-performance measure. In particular, we want the performance of h to converge (in

probability) to Bayes optimal ψ-performance as the training sample size increases. Below we define

Bayes optimal ψ-performance as the optimal value over feasible confusion matrices.

Definition 7.4 (Feasible confusion matrices). Feasible confusion matrices w.r.t. D are all possible

confusion matrices achieved by randomized classifiers. Define CD as the set of feasible confusion

matrices w.r.t. D as

CD = {CD[h] : h : X → ∆n} .

We note that CD is a convex set (Narasimhan et al. (2015)).

Definition 7.5 (Bayes optimal ψ-performance). For any function ψ : Rn×n → R+, define the Bayes

optimal ψ-performance w.r.t. D as

Ψψ,∗
D = inf

h:X→∆n

Ψψ
D[h] = inf

h:X→∆n

ψ(CD[h]) = inf
C∈CD

ψ(C) .

In the following sections, we focus on two broad classes of non-decomposable performance measures,

namely monotonic convex and ratio-of-linear. The former includes H-mean, Q-mean and G-mean,

and the latter includes Micro F1.
26See Table 1 of Narasimhan et al. (2015).
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7.5. Monotonic Convex Performance Measures

Our work develops noise-corrected versions of the algorithms of Narasimhan et al. (2015). Below,

we describe two key operations on which the algorithms in Narasimhan et al. (2015) are built; we

then describe our noise-corrected algorithm for monotonic convex performance measures. We will

show how we use the noise matrix T to correct the two operations to learn from noisy labels. We

note that the noise correction operations work with estimated T̂ as well. We start with the definition

and some examples of monotonic convex performance measures.

Definition 7.6 (Monotonic convex performance measures). A performance measure ψ : Rn×n →

R+ is monotonic convex if for any confusion matrix C, ψ(C) is convex in C, and monotonically

(strictly) decreasing in Ci,i and non-decreasing in Ci,j for i ̸= j.

Example 7.2 (H-mean, Q-mean and G-mean, all in loss forms). H-mean:

ψ(C) = 1− n
( n∑
i=1

∑n
j=1Ci,j

Ci,i

)−1
.

Q-mean:

ψ(C) =

√√√√ 1

n

n∑
i=1

(
1− Ci,i∑n

j=1Ci,j

)2
.

G-mean:

ψ(C) = 1−
( n∏
i=1

Ci,i∑n
j=1Ci,j

) 1
n .

Next, we sketch the idea behind the algorithms in Narasimhan et al. (2015), and show how to

introduce noise corrections to learn from noisy labels. We first define the class probability function.

Definition 7.7 (Class probability function, class probability for short). For D, the class probability

function η : X → ∆n is defined as ηy(X) = P(Y = y|X) for y ∈ [n]. Similarly for D̃, we define

η̃ : X → ∆n as η̃ỹ(X) = P(Ỹ = ỹ|X) for ỹ ∈ [n].

Idea behind algorithms in the standard (non-noisy) setting (Narasimhan et al., 2015).
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The algorithmic framework optimizes the non-decomposable performance measure ψ of interest

through an iterative approach (based on the Frank-Wolfe method for the monotonic convex case,

and based on the bisection method for the ratio-of-linear case; details later), which in each iteration

t, approximates the target performance measure ψ by a linear loss-based performance measure

Lt. Each iteration involves two key operations: OP1 and OP2. OP1 involves finding an optimal

classifier for the current linear approximation Lt. This is done by using a class probability estimator

(CPE) η̂ learned from the (clean) training sample, and then defining classifier ĝt : X → [n] as

ĝt(x) = argminy∈[n] η̂(x)
⊤ℓty. OP2 involves estimating CD[ĝt], the confusion matrix of ĝt w.r.t. D,

by ĈS [ĝt], the empirical confusion matrix of ĝt w.r.t. sample S = ((xi, yi))
m
i=1 ∼ Dm defined below:

ĈS
j,k[ĝ

t] =
1

m

m∑
i=1

1(yi = j, ĝt(xi) = k) . (7.1)

Note that ĈS [ĝt] converges to CD[ĝt] as m increases. (More specifically, to facilitate consistency

analysis, the iterative algorithms split the training sample S into S1 and S2. S1 is used to learn a

CPE model η̂, and in each iterative step t, S2 is used to calculate ĈS2 [ĝt] via OP2.)

Noise-corrected algorithm for monotonic convex performance measures. We are now

ready to describe our approach. In learning from noisy labels, the algorithm only sees noisy sample

S̃. Our approach is to introduce noise corrections to both OP1 and OP2, so the modified algorithm

can still output a good classifier w.r.t. the clean distribution D.

Noise-corrected OP1. Recall OP1 involves finding an optimal classifier for a loss-based perfor-

mance measure Lt w.r.t. D. To do so with a noisy sample, we propose to find an optimal classifier

for a noise-corrected loss-based performance measure (Lt)′ = (T⊤)−1Lt w.r.t. D̃ according to the

following proposition.

Proposition 7.1. Let L′ = (T⊤)−1L. Then any Bayes optimal classifier for L′-performance w.r.t.

D̃ is also Bayes optimal for L-performance w.r.t. D.
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Proof. Let h∗ be a Bayes optimal classifier for (T⊤)−1L-performance w.r.t. D̃. So

inf
C̃∈C

D̃

⟨(T⊤)−1L, C̃⟩ = ⟨(T⊤)−1L,CD̃[h∗]⟩

= ⟨L,T−1CD̃[h∗]⟩

= ⟨L,CD[h∗]⟩ ,

where we have used properties of the adjoint in the second “=”.

Note that for any C ∈ CD, we have

⟨L,C⟩ = ⟨(T⊤)−1L,TC⟩

≥ inf
C̃∈C

D̃

⟨(T⊤)−1L, C̃⟩

= ⟨L,CD[h∗]⟩ .

So h∗ is also Bayes optimal for L-performance w.r.t. D, i.e., ⟨L,CD[h∗]⟩ = ΨL,∗
D .

This idea has also been used in multiclass noisy label settings with L-performance

(van Rooyen and Williamson, 2017; Zhang et al., 2021).

Noise-corrected OP2. Recall OP2 is to estimate CD[ĝt]. We need to do so with noisy sample

S̃. We first observe a relation between clean confusion matrix CD[ĝt] and noisy confusion matrix

CD̃[ĝt] under noise matrix T.

Proposition 7.2. For a given classifier h, the relation between clean confusion matrix CD and

noisy confusion matrix CD̃ under CCN matrix T is CD̃[h] = TCD[h].
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Proof.

CD̃i,j [h] = P(Ỹ = i, h(X) = j)

= P(Ỹ = i|h(X) = j)P(h(X) = j)

=
∑
k∈[n]

P(Ỹ = i, Y = k|h(X) = j)P(h(X) = j)

=
∑
k∈[n]

P(Ỹ = i|Y = k)P(Y = k|h(X) = j)P(h(X) = j)

=
∑
k∈[n]

Ti,k ·P(Y = k|h(X) = j)P(h(X) = j)

=
∑
k∈[n]

Ti,k ·P(Y = k, h(X) = j)

=
∑
k∈[n]

Ti,k · CDkj [h] .

So we propose to estimate CD[ĝt] by T−1ĈS̃ [ĝt]. In Section 7.7, we will show this gives a consistent

estimate, i.e., T−1ĈS̃ [ĝt] converges to CD[ĝt] as the size of S̃ increases.

We can now incorporate the noise-corrected OP1 and OP2 into the iterative algorithm based on

Frank-Wolfe method (Frank and Wolfe, 1956; Narasimhan et al., 2015). The noise-corrected algo-

rithm is summarized in Algorithm 7.1. This algorithm applies to monotonic convex performance

measures ψ, such as H-mean, Q-mean and G-mean. It seeks to solve minC∈CD ψ(C) with the noisy

sample S̃. Note that the form ∇ψ(·) in Line 7 comes from the form of Bayes optimal classifier

for monotonic convex performance measures in the standard (non-noisy) setting (Theorem 13 of

Narasimhan et al. (2015)). Specifically, Algorithm 7.1 maintains Ct implicitly via ht. At each step

t, it applies noise-corrected OP1 and OP2 to construct a loss matrix (Lt)′ and solve a linear min-

imization problem, and to compute an empirical confusion matrix. The final randomized classifier

hT is a convex combination of all the classifiers h0, h1, ..., hT−1. In Section 7.7, we will formally

prove the noise-corrected algorithm is consistent.
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Algorithm 7.1 Noise-Corrected Frank-Wolfe (NCFW) Based Algorithm for Mono-
tonic Convex Performance Measures (See Section 7.5 for details.)
1: Input: 1) Performance measure ψ : [0, 1]n×n → R+ that is convex over CD; 2) Noisy training

sample S̃ = ((xi, ỹi))
m
i=1 ∈ (X × Y)m; 3) Noise matrix T (or estimated noise matrix T̂)

2: Parameter: Number of iterative steps T ∈ N
3: Split S̃ into S̃1 and S̃2, each with size m

2

4: Run a CPE learner on S̃1: ̂̃η = CPE(S̃1)
5: Initialize: h0 : X → ∆n, C0 = ĈS̃2 [h0]
6: for t = 1 to T do
7: Calculate noise-corrected loss-based performance measure (Lt)′ = (T⊤)−1∇ψ(T−1Ct−1)

8: Obtain ĝt = x 7→ argminy∈[n]
̂̃η(x)⊤(ℓty)′ and update ht = (1− 2

t+1)h
t−1 + 2

t+1 ĝ
t

9: Calculate Γt = ĈS̃2 [ĝt] and update Ct = (1− 2
t+1)C

t−1 + 2
t+1Γ

t

10: end for
11: Output: hT

7.6. Ratio-of-linear Performance Measures

We now move to the next family of non-decomposable performance measures, namely ratio-of-linear

performance measures. We start with the definition and an example. Then we will show how to use

the noise-corrected OP1 and OP2 described in Section 7.5 to build an algorithm to learn from noisy

labels for ratio-of-linear performance measures. We will also provide another view of the algorithm

from the perspective of correcting the performance measure ψ.

Definition 7.8 (Ratio-of-linear performance measures). A performance measure ψ : Rn×n → R+

is ratio-of-linear if there are A,B ∈ Rn×n such that for any confusion matrix C, ⟨B,C⟩ > 0 and

ψ(C) = ⟨A,C⟩
⟨B,C⟩ .

Example 7.3 (Micro F1 in loss form). Micro F1: ψ(C) = 1− 2
∑n

i=2 Ci,i

2−
∑n

i=1 C1,i−
∑n

i=1 Ci,1
.

Noise-corrected algorithm for ratio-of-linear performance measures. The iterative algo-

rithm based on Bisection method (Lemaréchal, 2006; Narasimhan et al., 2015) follows broadly a

similar idea as described in Section 7.5, so we can use the same noise-corrected OP1 and OP2 to

modify the algorithm. The noise-corrected algorithm is summarized in Algorithm 7.2. This algo-

rithm applies to ratio-of-linear performance measures ψ, such as Micro F1. It uses a binary search
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Algorithm 7.2 Noise-Corrected Bisection (NCBS) Based Algorithm for Ratio-of-
linear Performance Measures (See Section 7.6 for details.)

1: Input: 1) Performance measure ψ(C) = ⟨A,C⟩
⟨B,C⟩ with A,B ∈ Rn×n; 2) Noisy training sample

S̃ = ((xi, ỹi))
m
i=1 ∈ (X × Y)m; 3) Noise matrix T (or estimated noise matrix T̂)

2: Parameter: Number of iterative steps T ∈ N
3: Split S̃ into S̃1 and S̃2, each with size m

2

4: Run a CPE learner on S̃1: ̂̃η = CPE(S̃1)
5: Initialize: h0 : X → [n], α0 = 0, β0 = 1
6: for t = 1 to T do
7: Calculate noise-corrected loss (Lt)′ = (T⊤)−1(A− γtB) where γt = (αt−1 + βt−1)/2

8: Obtain ĝt = x 7→ argminy∈[n]
̂̃η(x)⊤(ℓty)′ and calculate Γt = ĈS̃2 [ĝt]

9: if ψ(T−1Γt) ≤ γt then αt = αt−1, βt = γt, ht = ĝt else αt = γt, βt = βt−1, ht = ht−1

10: end for
11: Output: hT

approach to find the minimum value of minC∈CD ψ(C). Note that the form A−γB in Line 7 comes

from the form of Bayes optimal classifier for ratio-of–linear performance measures in the standard

(non-noisy) setting (Theorem 11 of Narasimhan et al. (2015)). Again, Algorithm 7.2 maintains Ct

implicitly via ht. At each step t, it applies noise-corrected OP1 and OP2 to construct a loss ma-

trix (Lt)′ and solve a linear minimization problem, and to compute an empirical confusion matrix.

The final classifier hT is deterministic. In Section 7.7, we will formally prove the noise-corrected

algorithm is consistent.

We also offer another view of Algorithm 7.2 from the perspective of correcting ψ. In particular, we

show that one can construct a noise-corrected performance measure ψ̃, which is also ratio-of-linear.

Then one can simply optimize ψ̃ using a noisy sample to learn a classifier h, and the learned h will

also be optimal for the original performance measure ψ w.r.t. the clean distribution D.

Theorem 7.3 (Form of Bayes optimal classifier for ratio-of-linear ψ by correcting ψ). Consider

ratio-of-linear performance measure ψ(C) = ⟨A,C⟩
⟨B,C⟩ with ⟨B,C⟩ > 0 ∀C ∈ CD. Define noise-

corrected performance measure ψ̃ : Rn×n → R+ by ψ̃ = ψ ◦ T−1. Then ψ̃(C̃) = ⟨(T⊤)−1A,C̃⟩
⟨(T⊤)−1B,C̃⟩

with ⟨(T⊤)−1B, C̃⟩ > 0 for all C̃ ∈ C
D̃
. Moreover, any Bayes optimal classifier for ψ̃-performance

w.r.t. D̃ is also Bayes optimal for ψ-performance w.r.t. D.
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Proof. By property of adjoint, we have

ψ̃(C̃) = ψ ◦T−1(C̃) = ψ
(
T−1C̃

)
=
⟨A,T−1C̃⟩
⟨B,T−1C̃⟩

=
⟨(T⊤)−1A, C̃⟩
⟨(T⊤)−1B, C̃⟩

.

For all C̃ ∈ C
D̃

, there exists C ∈ CD such that C̃ = TC. So,

⟨(T⊤)−1B, C̃⟩ = ⟨B,C⟩ > 0 .

This shows ⟨(T⊤)−1B, C̃⟩ > 0 for all C̃ ∈ C
D̃

.

Let h∗ be a Bayes optimal classifier for ψ̃-performance w.r.t. D̃ (the existence of such a classifier is

guaranteed by Theorem 11 of Narasimhan et al. (2015)). So,

inf
C̃∈C

D̃

ψ̃(C̃) = ψ̃(CD̃[h∗])

=
⟨(T⊤)−1A,CD̃[h∗]⟩
⟨(T⊤)−1B,CD̃[h∗]⟩

=
⟨(T⊤)−1A,TCD[h∗]⟩
⟨(T⊤)−1B,TCD[h∗]⟩

=
⟨A,CD[h∗]⟩
⟨B,CD[h∗]⟩

.

For all C ∈ CD,

ψ(C) =
⟨A,C⟩
⟨B,C⟩

≥ inf
C′∈CD

⟨A,C′⟩
⟨B,C′⟩

= inf
C′∈CD

⟨(T⊤)−1A,TC′⟩
⟨(T⊤)−1B,TC′⟩

= inf
C̃∈C

D̃

ψ̃(C̃)

=
⟨A,CD[h∗]⟩
⟨B,CD[h∗]⟩

.

This shows h∗ is also Bayes optimal for ψ-performance w.r.t. D.
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Therefore, one can view Algorithm 7.2 as finding the Bayes optimal classifier for ψ̃ w.r.t. the noisy

distribution D̃, which in turn is also Bayes optimal for ψ w.r.t. the clean distribution D. This

view is reminiscent of the Unbiased Estimator approach in van Rooyen and Williamson (2017) and

Backward method in Patrini et al. (2017), in which one optimizes noise-corrected surrogate losses

using a noisy sample to learn classifiers that are optimal w.r.t. the clean distribution.

7.7. Consistency and Regret Bounds

In this section, we derive quantitative regret bounds for our noise-corrected algorithms. Our results

show that when the CPE learner used in the algorithms is consistent (i.e., it converges to the

noisy class probabilities), then the noise-corrected algorithms are consistent, i.e., they can output

classifiers whose ψ-performance converges to the Bayes optimal ψ-performance w.r.t. D as the size

of the noisy training sample S̃ increases. In addition, we provide regret bounds for our algorithms

when estimated T̂ is used instead of T. To start, we formally define what it means for a learning

algorithm to be ψ-consistent when learning from noisy labels.

Definition 7.9 (ψ-regret). For any function ψ : Rn×n → R+ and classifier h : X → ∆n, define

ψ-regret of h w.r.t. D as the difference between ψ-performance of h and the Bayes optimal ψ-

performance: regretψD[h] = Ψψ
D[h]−Ψψ,∗

D .

Definition 7.10 (ψ-consistent algorithm when learning from noisy labels). For ψ : Rn×n → R+,

we say a multiclass algorithm A : ∪∞m=1D̃
m → (X → ∆n), which given a noisy sample S̃ of size m

outputs a (randomized) classifier A(S̃), is consistent for ψ w.r.t. D if for all ϵ > 0:

P
S̃∼D̃m

(
regretψD[A(S̃)] > ϵ

)
→ 0 as m→∞ .

7.7.1. Regret Bounds with Known T

Below, we provide guarantees for the noise-corrected OP1 and OP2 (Lemma 7.4 and Lemma 7.5).

They are then used in deriving the regret bounds.

Lemma 7.4 (Guarantee for noise-corrected OP1). Let ̂̃η : X→∆n be the CPE model learned from
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noisy sample S̃. Then

EX

[∥∥T−1 ̂̃η(X)− η(X)
∥∥
1

]
≤
∥∥T−1

∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
.

Proof.

EX

[∥∥T−1 ̂̃η(X)− η(X)
∥∥
1

]
= EX

[∥∥T−1 ̂̃η(X)−T−1η̃(X)
∥∥
1

]
≤
∥∥T−1

∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
.

Lemma 7.5 (Guarantee for noise-corrected OP2). For h : X → ∆n, let ĈS̃ [h] be the empirical

confusion matrix w.r.t. noisy sample S̃ (computed similarly as ĈS [h] in Eq. (7.1)). Then

∥∥CD[h]−T−1ĈS̃ [h]
∥∥

vec,∞

≤ n
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
vec,∞ .

Proof.

∥∥CD[h]−T−1ĈS̃ [h]
∥∥

vec,∞ =
∥∥T−1CD̃[h]−T−1ĈS̃ [h]

∥∥
vec,∞

≤
∥∥T−1CD̃[h]−T−1ĈS̃ [h]

∥∥
1

≤
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
1

≤ n
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
vec,∞ .

Notes for Lemma 7.4 and Lemma 7.5: In Lemma 7.4, T−1 ̂̃η(x) might be viewed as an estimate

for η(x). If the CPE model used is consistent (i.e., EX
[∥∥̂̃η(X) − η̃(X)

∥∥
1

]
→ 0 as the sample size

increases), then this estimation is consistent as well. Similarly, in Lemma 7.5, T−1ĈS̃ [h] might
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be viewed as an estimate for CD[h]. Because the confusion matrix estimator in Eq. (7.1) is

consistent (i.e.,
∥∥CD̃[h]− ĈS̃ [h]

∥∥
vec,∞ → 0 as the sample size increases) as shown in Lemma 15 of

Narasimhan et al. (2015), this estimation is also consistent.
∥∥T−1

∥∥
1

might be viewed as a constant

capturing the overall amount of label noise.

Theorem 7.6 (ψ-regret bound for Algorithm 7.1). Let ψ : Rn×n → R+ be monotonic convex over

CD, and L-Lipschitz and β-smooth w.r.t. L1 norm.27 Noisy sample S̃ = ((xi, ỹi))
m
i=1 ∈ (X × [n])m

is drawn randomly from D̃m. Let ̂̃η : X→∆n be the CPE model learned from S̃1 as in Algorithm

7.1. Then for δ ∈ (0, 1], with probability at least 1− δ (over S̃ ∼ D̃m), we have

regretψD[h
T ] ≤ 4L

∥∥T−1
∥∥
1
EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+

8β

T + 2

+ 4
√
2βn3C

∥∥T−1
∥∥
1

√
n2 log(n) log(m) + log(n2/δ)

m
,

where C > 0 is a distribution-independent constant.

Theorem 7.7 (ψ-regret bound for Algorithm 7.2). Let ψ(C) = ⟨A,C⟩
⟨B,C⟩ for A,B ∈ Rn×n with

minC∈CD⟨B,C⟩ ≥ b for some b > 0. Noisy sample S̃ = ((xi, ỹi))
m
i=1 ∈ (X × [n])m is drawn randomly

from D̃m. Let ̂̃η : X→∆n be the CPE model learned from S̃1 as in Algorithm 7.2. Then for δ ∈ (0, 1],

with probability at least 1− δ (over S̃ ∼ D̃m), we have

regretψD[h
T ] ≤ 2τ

∥∥T−1
∥∥
1
EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+ 2−T

+ 2
√
2τnC

∥∥T−1
∥∥
1

√
n2 log(n) log(m) + log(n2/δ)

m
,

where τ = 1
b

(
∥A∥vec,1 + ∥B∥vec,1

)
and C > 0 is a distribution-independent constant.

In particular, using a strongly/strictly proper composite surrogate loss (e.g., multiclass logistic

regression loss/cross entropy loss with softmax function) over a universal function class (with suitable

regularization) to learn a CPE model ensures a consistent noisy class probability estimation, i.e.,

EX

[∥∥̂̃η(X) − η̃(X)
∥∥
1

]
→ 0 as the sample size increases (Agarwal, 2014; Williamson et al., 2016;

27A function ψ is β-smooth if its gradient is β-Lipschitz.
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Zhang et al., 2021). This leads to the convergence of the regret to zero as m → ∞, T → ∞. Also,

as the amount of label noise (captured by
∥∥T−1

∥∥
1
) increases, the bounds get larger; one might

therefore need a larger noisy sample size to achieve the same level of ψ-regret w.r.t. D. Our

synthetic experiments also confirm this sample complexity behavior.

Notes for our proof of Theorem 7.6: Our proof of Theorem 7.6 uses Lemma 14, Lemma 15 and

Theorem 16 in Narasimhan et al. (2015), along with their proofs. We include a proposition below

that summarizes the key aspects of Lemma 14, Lemma 15 and Theorem 16 in Narasimhan et al.

(2015) that we make use of (with slight modification in order for it to be consistent with our

notations).

Proposition 7.8 (ψ-regret bound of Frank-Wolfe based algorithm in the non-noisy setting; The-

orem 16 in Narasimhan et al. (2015)). Let ψ : Rn×n → R+ be monotonic convex over CD, and

L-Lipschitz and β-smooth w.r.t. L1 norm. Let clean sample S = ((xi, yi))
m
i=1 ∈ (X × [n])m be drawn

randomly from Dm. Let η̂ : X→∆n be the CPE model learned from S1 as in the Frank-Wolfe based

algorithm, and hFWS : X → ∆n be the classifier returned after T iterations. Let δ ∈ (0, 1]. Then

with probability ≥ 1− δ (over S ∼ Dm),

regretψD[h
FW
S ] ≤ 4LEX

[∥∥η̂(X)− η(X)
∥∥
1

]
+

8β

T + 2

+ 4βn2 sup
h∈Hη̂

∥∥CD[h]− ĈS2 [h]
∥∥

vec,∞

≤ 4LEX

[∥∥η̂(X)− η(X)
∥∥
1

]
+

8β

T + 2

+ 4
√
2βn2C

√
n2 log(n) log(m) + log(n2/δ)

m
,

where C > 0 is a distribution-independent constant, and

Hη̂ = {h : X → [n], h(x) = argmin
y∈[n]

η̂(x)⊤ℓy,L ∈ Rn×n} . (7.2)

The second ‘≤’ was obtained by Lemma 15 of Narasimhan et al. (2015) and |S2| = m/2.
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Proof of Theorem 7.6.

Proof. In Algorithm 7.1, we only have noisy sample S̃ that is split into S̃1 and S̃2. We implicitly

estimate η by T−1 ◦ ̂̃η, where ̂̃η : X→∆n is a CPE model learned from S̃1. Lemma 7.4 shows an

additional factor of
∥∥T−1

∥∥
1

as a price paid to learn from a noisy sample instead of a clean one.

For a classifier h, we estimate CD[h] by T−1ĈS̃2 [h], where ĈS̃2 [h] is the empirical confusion matrix

learned from S̃2. Lemma 7.5 shows an additional factor of n
∥∥T−1

∥∥
1

as a cost to learn from a noisy

sample instead of a clean one. Note that Hη̂ = Ĥ̃η for η̂ = T−1 ◦ ̂̃η. Chaining this reasoning with

Proposition 7.8 establishes the claim.

Notes for our proof of Theorem 7.7: Our proof of Theorem 7.7 uses Lemma 14, Lemma 15 and

Theorem 17 in Narasimhan et al. (2015), along with their proofs. We include a proposition below

that summarizes the key aspects of Lemma 14, Lemma 15 and Theorem 17 in Narasimhan et al.

(2015) that we make use of (with slight modification in order for it to be consistent with our

notations).

Proposition 7.9 (ψ-regret bound for bisection based algorithm in the non-noisy setting; Theorem

17 in Narasimhan et al. (2015)). Let ψ(C) = ⟨A,C⟩
⟨B,C⟩ for A,B ∈ Rn×n with minC∈CD⟨B,C⟩ ≥ b for

some b > 0. Let clean sample S = ((xi, yi))
m
i=1 ∈ (X × [n])m be drawn randomly from Dm. Let

η̂ : X→∆n be the CPE model learned from S1 as in the bisection based algorithm, and hBS
S : X → ∆n

be the classifier returned after T iterations. Let δ ∈ (0, 1]. Then with probability ≥ 1 − δ (over

S ∼ Dm),

regretψD[h
BS
S ] ≤ 2τEX

[∥∥η̂(X)− η(X)
∥∥
1

]
+ 2−T

+ 2τ sup
h∈Hη̂

∥∥CD[h]− ĈS2 [h]
∥∥

vec,∞

≤ 2τEX

[∥∥η̂(X)− η(X)
∥∥
1

]
+ 2−T

+ 2
√
2Cτ

√
n2 log(n) log(m) + log(n2/δ)

m
,
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where τ = 1
b

(
∥A∥vec,1 + ∥B∥vec,1

)
, C > 0 is a distribution-independent constant, and Hη̂ = {h :

X → [n], h(x) = argminy∈[n] η̂(x)
⊤ℓy,L ∈ Rn×n}. The second ‘≤’ was obtained by Lemma 15 of

Narasimhan et al. (2015) and |S2| = m/2.

Proof of Theorem 7.7.

Proof. In Algorithm 7.2, we only have noisy sample S̃ that is split into S̃1 and S̃2. We implicitly

estimate η by T−1 ◦ ̂̃η, where ̂̃η : X→∆n is a CPE model learned from S̃1. Lemma 7.4 shows an

additional factor of
∥∥T−1

∥∥
1

as a price paid to learn from a noisy sample instead of a clean one.

For a classifier h, we estimate CD[h] by T−1ĈS̃2 [h], where ĈS̃2 [h] is the empirical confusion matrix

learned from S̃2. Lemma 7.5 shows an additional factor of n
∥∥T−1

∥∥
1

as a cost to learn from a noisy

sample instead of a clean one. Note that Hη̂ = Ĥ̃η for η̂ = T−1 ◦ ̂̃η. Chaining this reasoning with

Proposition 7.9 establishes the claim.

7.7.2. Regret Bounds with Estimated T̂

When noise matrix T is not known, one may need to use estimated T̂. Several methods have been

developed to estimate T from the noisy sample (Xia et al., 2019; Yao et al., 2020; Li et al., 2021).

Below, we provide regret bounds for our noise-corrected algorithms when estimated T̂ is used. They

involve an additional factor
∥∥T̂−1 −T−1

∥∥
1

that quantifies the quality of the estimated T̂.

Lemma 7.10 (Guarantee for noise-corrected OP1 with estimated T̂). Let ̂̃η : X→∆n be the CPE

model learned from noisy sample S̃. Let T̂ be an estimate of T. Then

EX

[∥∥T̂−1 ̂̃η(X)− η(X)
∥∥
1

]
≤
∥∥T−1

∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+
∥∥T̂−1 −T−1

∥∥
1
.
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Proof.

EX

[∥∥T̂−1 ̂̃η(X)− η(X)
∥∥
1

]
= EX

[∥∥T̂−1 ̂̃η(X)−T−1η̃(X)
∥∥
1

]
= EX

[∥∥T̂−1 ̂̃η(X)−T−1η̃(X) +T−1 ̂̃η(X)−T−1 ̂̃η(X)
∥∥
1

]
≤ EX

[∥∥T−1 ̂̃η(X)−T−1η̃(X)
∥∥
1
+
∥∥T̂−1 ̂̃η(X)−T−1 ̂̃η(X)

∥∥
1

]
≤
∥∥T−1

∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+
∥∥T̂−1 −T−1

∥∥
1
·EX

[∥∥̂̃η(X)
∥∥
1

]
≤
∥∥T−1

∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+
∥∥T̂−1 −T−1

∥∥
1
.

Lemma 7.11 (Guarantee for noise-corrected OP2 with estimated T̂). For h : X → ∆n, let ĈS̃ [h]

be the empirical confusion matrix w.r.t. noisy sample S̃ (computed similarly as ĈS [h] in Eq. (7.1)).

Let T̂ be an estimate of T. Then

∥∥CD[h]− T̂−1ĈS̃ [h]
∥∥

vec,∞

≤ n
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
vec,∞ +

∥∥T̂−1 −T−1
∥∥
1
.
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Proof.

∥∥CD[h]− T̂−1ĈS̃ [h]
∥∥

vec,∞

=
∥∥T−1CD̃[h]− T̂−1ĈS̃ [h]

∥∥
vec,∞

=
∥∥T−1CD̃[h]− T̂−1ĈS̃ [h] +T−1ĈS̃ [h]−T−1ĈS̃ [h]

∥∥
vec,∞

≤
∥∥T−1CD̃[h]− T̂−1ĈS̃ [h] +T−1ĈS̃ [h]−T−1ĈS̃ [h]

∥∥
1

≤
∥∥T−1CD̃[h]−T−1ĈS̃ [h]

∥∥
1
+
∥∥T−1ĈS̃ [h]− T̂−1ĈS̃ [h]

∥∥
1

≤
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
1
+
∥∥(T−1 − T̂−1)ĈS̃ [h]

∥∥
1

≤ n
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
vec,∞ +

∥∥T−1 − T̂−1
∥∥
1
·
∥∥ĈS̃ [h]

∥∥
1

≤ n
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
vec,∞ +

∥∥T−1 − T̂−1
∥∥
1
.

Theorem 7.12 (ψ-regret bound for Algorithm 7.1 with estimated T̂). Let ψ, S̃ and ̂̃η be specified

as in Theorem 7.6. Let T̂ be an estimate of T. Then for δ ∈ (0, 1], with probability at least 1 − δ

(over S̃ ∼ D̃m), we have

regretψD[h
T ] ≤ 4L

∥∥T−1
∥∥
1
EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+

8β

T + 2

+ 4
√
2βn3C

∥∥T−1
∥∥
1

√
n2 log(n) log(m) + log(n2/δ)

m

+ (4L+ 4βn2)
∥∥T̂−1 −T−1

∥∥
1
,

where C > 0 is a distribution-independent constant.

Proof. Similar as in the proof of Theorem 7.6, chaining Lemma 7.10 and Lemma 7.11 with Propo-

sition 7.8 establishes the claim.

Theorem 7.13 (ψ-regret bound for Algorithm 7.2 with estimated T̂). Let ψ, S̃ and ̂̃η be specified

as in Theorem 7.7. Let T̂ be an estimate of T. Then for δ ∈ (0, 1], with probability at least 1 − δ
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(over S̃ ∼ D̃m), we have

regretψD[h
T ] ≤ 2τ

∥∥T−1
∥∥
1
EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+ 2−T

+ 2
√
2τnC

∥∥T−1
∥∥
1

√
n2 log(n) log(m) + log(n2/δ)

m

+ 4τ
∥∥T̂−1 −T−1

∥∥
1
,

where τ = 1
b

(
∥A∥vec,1 + ∥B∥vec,1

)
and C > 0 is a distribution-independent constant.

Proof. Similar as in the proof of Theorem 7.7, chaining Lemma 7.10 and Lemma 7.11 with Propo-

sition 7.9 establishes the claim.

7.8. Experiments

We conducted two sets of experiments. In the first set of experiments, we generated synthetic data

and tested the sample complexity behavior of our algorithms. In the second set of experiments,

we used real data and compared our algorithms with other algorithms. Our code is available at

https://github.com/moshimowang/noisy-labels-non-decomposable.

7.8.1. Sample Complexity Behavior

We tested the sample complexity behavior of our algorithm on synthetic data generated from a

known distribution.

Specifically, we constructed a 3-class problem over a 2-dimensional instance space X = R2 as follows.

Instances x were generated according to a fixed Gaussian mixture distribution. The class probability

function η : X→∆3 was ηy(x) =
exp(w⊤

y x+by)∑3
y′=1 exp(w

⊤
y′x+by′ )

for some fixed weight vectors w1,w2,w3 ∈ R2

and bias terms b1, b2, b3 ∈ R. Given an instance x, a clean label y was drawn randomly according

to η(x). Then y was flipped to a noisy label ỹ according to the probabilities in the y-th column of

T, where T is a prescribed column stochastic noise matrix.

We generated noise matrices by choosing a noise level σ ∈ [0, 1] and setting diagonal entries of T to

1−σ and off-diagonal entries of T to σ
2 . We tested the sample complexity behavior of our algorithms
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Table 7.2: Details of Data Sets Used in Section 7.8

Data set # instances # classes # features
vehicle 846 4 18
pageblocks 5,473 5 10
satimage 6,435 6 36
covtype 581,012 7 14
abalone 4,177 12 8

for a variety of noise matrices T with increasing values of noise level σ = 0.1, 0.2, 0.3, 0.4, 0.6. The

corresponding values of ∥T−1∥1 were also increasing. The non-decomposable performance measures

were Q-mean and Micro F1. We applied Algorithm 7.1 for Q-mean with T = 5000 and Algorithm 7.2

for Micro F1 with T = 200. In both algorithms, the CPE learner was implemented by minimizing

the multiclass logistic regression loss (aka. cross entropy loss with softmax function) over linear

functions. We ran the algorithms on noisy training samples with increasing sizes (102, 103, 104,

105), and measured the performance on a clean test set of 105 examples. The results are shown in

Figure 7.2. The top plot shows results for Q-mean. The bottom plot shows results for Micro F1.

We see that, as suggested by our regret bounds, as ∥T−1∥1 increases (i.e., more noise), the sample

size required to achieve a given level of performance generally increases.

7.8.2. Comparison with Other Algorithms

We conducted experiments on several real data sets taken from UCI Machine Learning Repository

(Dua and Graff, 2017). Details of the data sets are in Table 7.2. We compared our noise-corrected

algorithms (NCFW and NCBS) with the baseline Frank-Wolfe (FW) and Bisection (BS) based

methods of Narasimhan et al. (2015, 2022) that were designed for the standard (non-noisy) learning

setting, as well as various previously proposed noise-corrected versions of multiclass logistic regres-

sion (NCLR-Backward (van Rooyen and Williamson, 2017; Patrini et al., 2017), NCLR-Forward

(Patrini et al., 2017), and NCLR-Plug-in (Zhang et al., 2021)). We used the authors’ implementa-

tions for FW and BS.28 To ensure a fair comparison, we also implemented our algorithms in the

same framework. Different variants of NCLR were implemented based on Patrini et al. (2017).29 A

linear function class is used in all algorithms. For NCFW, NCBS, FW, and BS, the linear model
28https://github.com/shivtavker/constrained-classification.
29https://github.com/giorgiop/loss-correction.
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Figure 7.2: Sample Complexity Behavior of Our Noise-corrected Algorithms NCFW (top) and
NCBS (bottom)

CPE learner was implemented using scikit-learn (Pedregosa et al., 2011). The different variants of

NCLR, implemented in TensorFlow (Abadi et al., 2015), also used a linear function class. In all

cases, regularization parameters were chosen by cross-validation.

To generate noise matrices T, we chose a noise level σ ∈ [0, 1], set diagonal entries of T to 1 − σ,

and set off-diagonal entries uniformly at random from [0, 1] so that each column of T sums to 1.

This makes sure that on average, 100σ percent of clean labels were flipped to other labels, i.e.,

σ ≈ 1
m

∑m
i=1 1(yi ̸= ỹi). Therefore, higher value of σ means a higher noise level. We generated

4 noise matrices with σ = 0.1, 0.2, 0.3, 0.4 according to this process. Training labels were flipped

randomly according to the prescribed noise matrix T.
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We ran FW and NCFW for T = 5000 iterative steps, and ran BS and NCBS for T = 200 iterative

steps. Performance of the learned model was then measured on a clean test set. The results are

summarized in Table 7.3 (for H-mean loss) and Table 7.4 (for Micro F1 loss), shown as the mean

(with standard error of the mean in parentheses) over 5 random 7 : 3 train-test splits. Higher σ

is a high noise level. For each data set and each noise level, the best performance is shown in

bold font. The results for G-mean loss and Q-mean loss can be found in Table 7.5 and Table 7.6.

As expected, in most cases, NCFW and NCBS outperform FW and BS, respectively, and they

outperform variants of noise-corrected multiclass logistic regression as well.

7.9. Conclusion

We have provided the first known noise-corrected algorithms, NCFW and NCBS, for multiclass

monotonic convex and ratio-of-linear performance measures under general class-conditional noise

models. We have also provided regret bounds for our algorithms showing that they are consistent

w.r.t. the clean data distribution, and quantifying the effect of noise on their sample complexity.

Our experiments have demonstrated the effectiveness of our algorithms in handling label noise.

For settings where the noise matrix T may be unknown, approaches for estimating T have been

proposed in the literature. These can be combined with our algorithms where needed, and we have

also provided regret bounds for our algorithms when estimated T̂ is used.
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Table 7.3: Comparison with Other Algorithms for H-mean Loss

Data sets Algorithms σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

vehicle FW 0.255 (0.005) 0.267 (0.011) 0.309 (0.007) 0.373 (0.010)
NCFW 0.254 (0.007) 0.266 (0.015) 0.307 (0.008) 0.338 (0.013)
NCLR-Backward 0.482 (0.024) 0.573 (0.020) 0.512 (0.033) 0.508 (0.021)
NCLR-Forward 0.512 (0.035) 0.563 (0.021) 0.570 (0.011) 0.563 (0.029)
NCLR-Plug-in 0.515 (0.016) 0.567 (0.010) 0.517 (0.028) 0.540 (0.015)

pageblocks FW 0.380 (0.041) 0.286 (0.011) 0.633 (0.097) 0.627 (0.066)
NCFW 0.269 (0.017) 0.253 (0.006) 0.535 (0.019) 0.528 (0.034)
NCLR-Backward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Forward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Plug-in 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.926 (0.066)

satimage FW 0.188 (0.005) 0.224 (0.005) 0.247 (0.006) 0.340 (0.006)
NCFW 0.186 (0.005) 0.222 (0.006) 0.230 (0.005) 0.300 (0.005)
NCLR-Backward 0.556 (0.023) 0.630 (0.026) 0.685 (0.043) 0.960 (0.012)
NCLR-Forward 0.542 (0.020) 0.522 (0.011) 0.612 (0.030) 0.877 (0.017)
NCLR-Plug-in 0.679 (0.049) 0.793 (0.023) 0.854 (0.031) 0.902 (0.021)

covtype FW 0.569 (0.001) 0.591 (0.001) 0.771 (0.010) 0.741 (0.009)
NCFW 0.525 (0.001) 0.569 (0.001) 0.606 (0.002) 0.706 (0.004)
NCLR-Backward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Forward 0.995 (0.001) 0.987 (0.002) 0.980 (0.002) 0.963 (0.005)
NCLR-Plug-in 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

abalone FW 0.806 (0.014) 0.799 (0.006) 0.812 (0.006) 0.801 (0.010)
NCFW 0.797 (0.008) 0.795 (0.006) 0.804 (0.008) 0.814 (0.010)
NCLR-Backward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Forward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Plug-in 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
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Table 7.4: Comparison with Other Algorithms for Micro F1 Loss

Data sets Algorithms σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

vehicle BS 0.268 (0.007) 0.307 (0.006) 0.323 (0.013) 0.388 (0.012)
NCBS 0.264 (0.008) 0.299 (0.006) 0.314 (0.011) 0.346 (0.009)
NCLR-Backward 0.435 (0.020) 0.524 (0.006) 0.508 (0.027) 0.494 (0.028)
NCLR-Forward 0.470 (0.031) 0.483 (0.020) 0.548 (0.016) 0.553 (0.030)
NCLR-Plug-in 0.494 (0.022) 0.488 (0.023) 0.491 (0.025) 0.521 (0.015)

pageblocks BS 0.231 (0.009) 0.323 (0.011) 0.862 (0.005) 0.899 (0.006)
NCBS 0.251 (0.008) 0.261 (0.010) 0.320 (0.006) 0.404 (0.020)
NCLR-Backward 0.515 (0.050) 0.457 (0.055) 0.756 (0.079) 0.510 (0.048)
NCLR-Forward 0.823 (0.083) 0.880 (0.048) 0.743 (0.113) 0.832 (0.093)
NCLR-Plug-in 0.609 (0.096) 0.595 (0.107) 0.568 (0.051) 0.795 (0.045)

satimage BS 0.219 (0.004) 0.224 (0.002) 0.242 (0.002) 0.313 (0.003)
NCBS 0.219 (0.004) 0.220 (0.003) 0.236 (0.002) 0.292 (0.002)
NCLR-Backward 0.215 (0.004) 0.222 (0.003) 0.227 (0.004) 0.231 (0.003)
NCLR-Forward 0.217 (0.003) 0.214 (0.002) 0.213 (0.003) 0.221 (0.003)
NCLR-Plug-in 0.234 (0.002) 0.236 (0.003) 0.255 (0.002) 0.300 (0.003)

covtype BS 0.361 (0.000) 0.355 (0.000) 0.362 (0.000) 0.362 (0.000)
NCBS 0.361 (0.000) 0.352 (0.000) 0.362 (0.000) 0.362 (0.000)
NCLR-Backward 0.384 (0.000) 0.385 (0.000) 0.388 (0.000) 0.390 (0.001)
NCLR-Forward 0.384 (0.000) 0.380 (0.000) 0.381 (0.001) 0.382 (0.001)
NCLR-Plug-in 0.398 (0.000) 0.396 (0.001) 0.397 (0.000) 0.397 (0.000)

abalone BS 0.731 (0.007) 0.746 (0.005) 0.746 (0.003) 0.750 (0.002)
NCBS 0.729 (0.007) 0.743 (0.005) 0.740 (0.003) 0.754 (0.001)
NCLR-Backward 0.787 (0.005) 0.789 (0.007) 0.797 (0.010) 0.793 (0.011)
NCLR-Forward 0.774 (0.007) 0.806 (0.004) 0.783 (0.003) 0.794 (0.009)
NCLR-Plug-in 0.789 (0.005) 0.789 (0.009) 0.803 (0.007) 0.799 (0.010)
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Table 7.5: Comparison with Other Algorithms for G-mean Loss

Data sets Algorithms σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

vehicle FW 0.230 (0.007) 0.249 (0.011) 0.287 (0.009) 0.349 (0.011)
NCFW 0.231 (0.008) 0.247 (0.012) 0.289 (0.009) 0.312 (0.012)
NCLR-Backward 0.432 (0.017) 0.519 (0.013) 0.488 (0.034) 0.469 (0.025)
NCLR-Forward 0.463 (0.030) 0.496 (0.015) 0.523 (0.012) 0.524 (0.025)
NCLR-Plug-in 0.477 (0.016) 0.503 (0.012) 0.486 (0.021) 0.502 (0.013)

pageblocks FW 0.331 (0.026) 0.225 (0.009) 0.552 (0.081) 0.563 (0.046)
NCFW 0.236 (0.040) 0.167 (0.010) 0.503 (0.125) 0.382 (0.018)
NCLR-Backward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Forward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Plug-in 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.898 (0.091)

satimage FW 0.181 (0.004) 0.214 (0.004) 0.225 (0.005) 0.310 (0.005)
NCFW 0.180 (0.005) 0.213 (0.004) 0.212 (0.005) 0.272 (0.005)
NCLR-Backward 0.368 (0.010) 0.400 (0.013) 0.428 (0.020) 0.684 (0.072)
NCLR-Forward 0.362 (0.009) 0.351 (0.005) 0.385 (0.011) 0.524 (0.014)
NCLR-Plug-in 0.439 (0.023) 0.486 (0.012) 0.550 (0.023) 0.638 (0.019)

covtype FW 0.570 (0.001) 0.577 (0.001) 0.685 (0.004) 0.690 (0.005)
NCFW 0.515 (0.001) 0.516 (0.001) 0.546 (0.001) 0.612 (0.004)
NCLR-Backward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Forward 0.908 (0.021) 0.875 (0.003) 0.869 (0.002) 0.847 (0.004)
NCLR-Plug-in 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

abalone FW 0.779 (0.008) 0.775 (0.002) 0.786 (0.005) 0.778 (0.005)
NCFW 0.776 (0.007) 0.766 (0.001) 0.781 (0.007) 0.784 (0.005)
NCLR-Backward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Forward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Plug-in 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
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Table 7.6: Comparison with Other Algorithms for Q-mean Loss

Data sets Algorithms σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

vehicle FW 0.268 (0.008) 0.287 (0.012) 0.313 (0.009) 0.367 (0.006)
NCFW 0.276 (0.005) 0.293 (0.009) 0.310 (0.010) 0.334 (0.011)
NCLR-Backward 0.449 (0.011) 0.518 (0.010) 0.495 (0.031) 0.480 (0.022)
NCLR-Forward 0.473 (0.023) 0.501 (0.011) 0.527 (0.011) 0.527 (0.023)
NCLR-Plug-in 0.486 (0.016) 0.504 (0.011) 0.489 (0.021) 0.507 (0.013)

pageblocks FW 0.352 (0.023) 0.276 (0.005) 0.499 (0.021) 0.547 (0.030)
NCFW 0.267 (0.016) 0.201 (0.004) 0.426 (0.032) 0.466 (0.036)
NCLR-Backward 0.684 (0.022) 0.683 (0.036) 0.776 (0.033) 0.715 (0.031)
NCLR-Forward 0.850 (0.024) 0.800 (0.039) 0.812 (0.042) 0.861 (0.019)
NCLR-Plug-in 0.695 (0.039) 0.641 (0.045) 0.681 (0.026) 0.677 (0.055)

satimage FW 0.197 (0.005) 0.228 (0.006) 0.246 (0.006) 0.323 (0.006)
NCFW 0.199 (0.006) 0.232 (0.005) 0.252 (0.007) 0.312 (0.005)
NCLR-Backward 0.390 (0.004) 0.403 (0.007) 0.412 (0.005) 0.443 (0.002)
NCLR-Forward 0.386 (0.005) 0.380 (0.003) 0.393 (0.004) 0.425 (0.001)
NCLR-Plug-in 0.425 (0.004) 0.435 (0.003) 0.465 (0.003) 0.528 (0.006)

covtype FW 0.567 (0.001) 0.570 (0.001) 0.639 (0.001) 0.653 (0.001)
NCFW 0.546 (0.001) 0.544 (0.001) 0.624 (0.000) 0.623 (0.001)
NCLR-Backward 0.736 (0.001) 0.744 (0.001) 0.752 (0.001) 0.768 (0.001)
NCLR-Forward 0.729 (0.001) 0.734 (0.001) 0.732 (0.001) 0.732 (0.001)
NCLR-Plug-in 0.799 (0.000) 0.802 (0.000) 0.813 (0.000) 0.813 (0.000)

abalone FW 0.754 (0.005) 0.762 (0.003) 0.763 (0.005) 0.767 (0.003)
NCFW 0.753 (0.005) 0.760 (0.003) 0.770 (0.006) 0.775 (0.004)
NCLR-Backward 0.910 (0.004) 0.919 (0.004) 0.917 (0.006) 0.910 (0.010)
NCLR-Forward 0.892 (0.008) 0.921 (0.004) 0.902 (0.004) 0.910 (0.006)
NCLR-Plug-in 0.907 (0.006) 0.915 (0.007) 0.911 (0.005) 0.908 (0.006)
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CHAPTER 8

SUMMARY

This thesis has explored complex classification problems in statistical machine learning, focusing on

three aspects: complex label space, complex learning setting, and complex performance measure.

The thesis aimed to develop principled, mathematically sound algorithms with theoretical guar-

antees for handling these complexities, ultimately improving the learning algorithm’s performance

with increasing data volumes. In particular, we have developed new principled algorithms for all

the above settings, together with mathematical performance guarantees as well as empirical demon-

stration of their effectiveness. Our study could significantly improve the reliability, accuracy, and

adaptability of machine learning algorithms, increasing their efficacy and applicability in real-world

scenarios. This research also holds the potential to inspire novel methodologies in machine learning,

fostering further exploration and development in this rapidly evolving field.
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APPENDIX A

SUPPLEMENTAL MATERIAL FOR CHAPTER 2

A.1. Implementation of ‘decode’

To solve the combinatorial optimization problem involved in the mapping decode : Rs2+1→{0, 1}s

as defined in Eq. (2.7) efficiently, we make use of an O(s3)-time procedure due to Dembczynski et al.

(2011). Specifically, Dembczynski et al. (2011) gave a procedure that, given a certain set of s2 + 1

statistics of the true conditional distribution p(y|x) at a point x ∈ X , computes in O(s3) time a

Bayes optimal multi-label prediction h∗(x) ∈ {0, 1}s at that point with respect to the F1-measure

by solving a similar combinatorial optimization problem (the approach generalizes easily to the Fβ-

measure for general β). Our algorithm (Algorithm 2.1) can be viewed as effectively estimating the

same s2+1 statistics from the training sample S; in particular, once a scoring function fS : X→Rs2+1

is learned by minimizing our surrogate loss ψ, the estimated statistics at a point x ∈ X are given

by γ−1(fS(x)) (where γ−1 is the inverse of the link function γ : [0, 1]→R associated with the strictly

proper composite binary loss ϕ used in our surrogate, and is applied element-wise to fS(x)). Our

‘decode’ mapping effectively corresponds to estimating a Bayes optimal prediction at x using these

estimated statistics; we can therefore apply the procedure of Dembczynski et al. (2011) to these

estimated statistics.

The implementation below is described for a general input vector u ∈ Rs2+1 (see Eq. (2.7)); in

our Fβ learning algorithm, to make a prediction at x ∈ X , it would be applied to u = fS(x).

The overall idea is that the combinatorial search over ŷ ∈ {0, 1}s is stratified over the s + 1 sets

Ŷl = {ŷ ∈ {0, 1}s : ∥ŷ∥1 = l}, l ∈ {0, 1, . . . , s}; to find an optimal element ŷl,∗ within each set Ŷl,

one need only solve a problem of the form ŷl,∗ ∈ argmin
ŷ∈Ŷl

∑s
j=1 ŷjTjl for certain numbers Tjl,

which can be done simply by finding the smallest l numbers among {Tjl : j ∈ [s]} and setting the

corresponding l entries of ŷl,∗ to 1 (and remaining entries to 0). Solving these s+1 subproblems and

picking the best solution among them takes a total of O(s2 ln(s)) time; computing the s2 numbers
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Algorithm A.1 Decode

1: Input: Vector u = (u0, (ujk)
s
j,k=1)

⊤ ∈ Rs2+1

2: Parameters: Link function γ : [0, 1]→R
3: Define matrices Q ∈ [0, 1]s×s and V ∈ Rs×s as follows:

Qjk = γ−1(ujk)

Vkl =
−(1 + β)2

β2k + l

4: Compute T = QV // matrix multiplication, O(s3) time
5: For l = 1 . . . s: // for loop takes total O(s2 ln(s)) time
6: Find the l smallest numbers among {Tjl : j ∈ [s]}; call the corresponding indices jl1, . . . , jll
7: Define ŷl,∗ ∈ {0, 1}s as follows:

ŷl,∗j =

{
1 if j ∈ {jl1, . . . , jll}
0 otherwise. // this solves ŷl,∗ ∈ argmin

ŷ∈Ŷl

∑s
j=1 ŷjTjl

8: Set z∗l =
∑s

j=1 ŷ
l,∗
j Tjl

9: End for
10: Pick ŷ∗ ∈ {0, 1}s as follows:

ŷ∗ ∈ argmin
ŷ∈{0, ŷ1,∗,..., ŷs,∗}

−1(ŷ = 0) · γ−1(u0) + 1(ŷ ̸= 0) · z∗∥ŷ∥1

11: Output: ŷ∗ ∈ {0, 1}s

Tjl involves a matrix multiplication that takes a total of O(s3) time.30

30One could in principle use faster matrix multiplication methods that take o(s3) time, but in practice, this would
be helpful for only extremely large values of s.
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APPENDIX B

SUPPLEMENTAL MATERIAL FOR CHAPTER 6

B.1. Supplement to Section 6.5

B.1.1. Detailed pseudocode for NCPLUG algorithm

See Algorithm B.1.

Algorithm B.1 Noise-Corrected Plug-in (NCPLUG) for Hamming loss under IFN
1: Inputs:

(1) Noisy training sample, S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m

(2) Noise rates c(j)0,1, c
(j)
1,0 ∀j ∈ [s]

2: Parameters:
(1) Class F of functions f : X→Rs

3: Compute f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)), where ψ is defined as

ψ(y,u) =

s∑
j=1

ϕlog(yj , uj)

4: Output:
Multi-label classifier

ĥj(x) = 1(
γ−1
log(f̂j(x))− c

(j)
0,1

1− c(j)0,1 − c
(j)
1,0

≥ 1

2
) ∀j ∈ [s]

B.1.2. Detailed pseudocode for NCEFP algorithm

See Algorithm B.2.

B.1.3. Detailed pseudocode for NCOC algorithm

See Algorithm B.3.

B.1.4. NCOC-Ham-IFN algorithm

As noted in Section 6.5.3, under the IFN model, noise matrices C are (to our knowledge) compu-

tationally expensive to invert, which makes it difficult to run the NCOC algorithm for such noise

matrices in practice. For the special case of Hamming loss under the IFN model, we present an
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Algorithm B.2 Noise-Corrected Exact F-measure Plug-in (NCEFP) for F1-measure
1: Inputs:

(1) Noisy training sample, S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m
(2) Noise matrix C ∈ [0, 1]|Y|×|Y|

2: Parameters:
(1) Class F of functions f : X→Rs2+1

3: Let A ∈ [0, 1](s
2+1)×|Y| be

a0,y = 1(∥y∥1 = 0) ; ajk,y = 1(∥y∥1 = k) · yj ∀j, k ∈ [s]

4: Let Ã = A(C⊤)−1, and define ãmin = min(miny ã0,y,miny,jk ãjk,y) and ãmax =
max(maxy ã0,y,maxy,jk ãjk,y)

5: Construct Ã′ ∈ [0, 1](s
2+1)×|Y| by shifting and scaling Ã as

ã′0,y =
ã0,y − ãmin

ãmax − ãmin
∈ [0, 1] ; ã′jk,y =

ãjk,y − ãmin

s · (ãmax − ãmin)
∈ [0, 1] ∀j, k ∈ [s]

6: Compute f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)), where ψ is as defined as

ψ(y,u) = ã′0,y · ϕlog(1, u0) + (1− ã′0,y) · ϕlog(0, u0)+
s∑
j=1

[ s∑
k=1

ã′jk,yϕmlog(k, (uj1, ..., ujs)) + (1−
s∑

k=1

ã′jk,y)ϕmlog(s+ 1, (uj1, ..., ujs))
]

7: Output:
Multi-label classifier

ĥ(x) = argmin
ŷ∈Y

{
1− [(ãmax − ãmin) · q̂′0(x) + ãmin] · 1(∥ŷ∥1 = 0)

−
s∑
j=1

s∑
k=1

[s · (ãmax − ãmin) · q̂′jk(x) + ãmin] ·
2 · ŷj

k + ∥ŷ∥1

}
where q̂′0(x) = γ−1

log(f̂0(x)) and q̂′jk(x) =
(
γ−1

mlog(f̂j1(x), ..., f̂js(x))
)
k
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Algorithm B.3 Noise-Corrected Output Coding (NCOC)
1: Inputs:

(1) Noisy training sample, S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m

(2) Target loss L ∈ R|Y|×|Y|
+ factorized as L = A⊤B + 1t⊤ for some A ∈ [0, 1]r×|Y|,B ∈

Rr×|Y|, t ∈ R|Y|

(3) Noise matrix C ∈ [0, 1]|Y|×|Y|

2: Parameters:
(1) Class F of functions f : X→Rr

3: Let Ã = A(C⊤)−1, and define ãmin = miny,j ãj,y and ãmax = maxy,j ãj,y
4: Construct Ã′ ∈ [0, 1]r×|Y| by shifting and scaling Ã as

ã′j,y =
ãj,y − ãmin

ãmax − ãmin
∈ [0, 1] ∀j ∈ [r]

5: Compute f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)), where ψ is defined as

ψ(y,u) =

r∑
j=1

(
ã′j,yϕlog(1, uj) + (1− ã′j,y)ϕlog(0, uj)

)
6: Output:

Multi-label classifier

ĥ(x) = argmin
ŷ∈Y

{
tŷ +

r∑
j=1

[(ãmax − ãmin) · γ−1
log(f̂j(x)) + ãmin] · bj,ŷ

}
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Algorithm B.4 NCOC-Ham-IFN for Hamming loss under IFN
1: Inputs:

(1) Noisy training sample, S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m

(2) Noise rates c(j)0,1, c
(j)
1,0 ∀j ∈ [s]

2: Parameters:
(1) Class F of functions f : X→Rs

3: Let c0,1 = [c
(1)
0,1, ..., c

(s)
0,1]

⊤ ∈ [0, 1)s, and define a diagonal matrix Λ of size s× s such that its i-th
diagonal element is 1

1−c(i)0,1−c
(i)
1,0

4: Let ˜̃A = Λ(A− c0,11
⊤), and define ˜̃amin = miny,j ˜̃aj,y and ˜̃amax = maxy,j ˜̃aj,y

5: Construct Ã′′ ∈ [0, 1]s×|Y| by shifting and scaling ˜̃A as

ã′′j,y =
˜̃aj,y − ˜̃amin˜̃amax − ˜̃amin

∈ [0, 1] ∀j ∈ [s] .

6: Compute f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)), where ψ is defined as

ψ(y,u) =
s∑
j=1

(
ã′′j,yϕlog(1, uj) + (1− ã′′j,y)ϕlog(0, uj)

)
7: Output:

Multi-label classifier

ĥ(x) = argmin
ŷ∈Y

{1
s
∥ŷ∥1 +

s∑
j=1

[(˜̃amax − ˜̃amin) · γ−1
log(f̂j(x)) +

˜̃amin] ·
1− 2ŷj

s

}

alternative faster noise-corrected output coding algorithm – that we call NCOC-Ham-IFN – that

decomposes the problem of estimating statistics q(x) into a different set of s binary CPE problems

obtained using a different coding matrix Ã′′ that does not require inverting C⊤.

Recall from Example 6.1 that LHam = A⊤B+1t⊤ where A ∈ [0, 1]s×|Y| with aj,y = yj , B ∈ Rs×|Y|

with bj,ŷ =
1−2ŷj
s , and t ∈ R|Y| with tŷ =

∑s
j=1

ŷj
s = 1

s∥ŷ∥1. Recall also that the s-dimensional

vector statistic q(x) defined as

q(x) = Aη(x)
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is Bayes-sufficient for LHam. We will express the desired statistics q(x) in terms of η̃(x) using a

matrix ˜̃A that does not require inverting C⊤, and will then use a shifted and scaled version of this

matrix to obtain Ã′′.

We have that

qj(x) = P(Yj = 1|x) ∀j ∈ [s] .

Next, as in Section 6.5.1, define q′(x) = Aη̃(x) so that

q′j(x) = P(Ỹj = 1|x) ∀j ∈ [s] .

Under the IFN model where c(j)0,1 + c
(j)
1,0 < 1 ∀j ∈ [s], qj(x) and q′j(x) are related by

qj(x) =
q′j(x)− c

(j)
0,1

1− c(j)0,1 − c
(j)
1,0

∀j ∈ [s] .

Let c0,1 = [c
(1)
0,1, ..., c

(s)
0,1]

⊤ ∈ [0, 1)s. Define a diagonal matrix Λ of size s×s such that its i-th diagonal

element is 1

1−c(i)0,1−c
(i)
1,0

. Then we can write

q(x) = Λ(q′(x)− c0,1) .

Now, define

˜̃
A = Λ(A− c0,11

⊤) ,

201



where 1 here is a |Y| × 1 vector. Then ˜̃A also has size s× |Y|, and we have

˜̃
Aη̃(x) = Λ(A− c0,11

⊤)η̃(x)

= Λ(Aη̃(x)− c0,11
⊤η̃(x))

= Λ(q′(x)− c0,1)

= q(x) .

Thus we have that statistics q(x) can be expressed in terms of η̃(x) as q(x) =
˜̃
Aη̃(x), where ˜̃A

does not require inverting C⊤.

Again, in order to set up suitably weighted binary CPE problems that can allow us to estimate

these statistics from the noisy training sample, we will use a shifted and scaled matrix Ã′′ to

estimate related statistics q′′(x), and then factor back in the scaling and shifting when making a

final prediction. Towards this, define ˜̃amin = miny,j ˜̃aj,y and ˜̃amax = maxy,j ˜̃aj,y, and define the

entries of Ã′′ ∈ [0, 1]s×|Y| as

ã′′j,y =
˜̃aj,y − ˜̃amin˜̃amax − ˜̃amin

∈ [0, 1] ∀j ∈ [s] .

We note again that matrix Ã′′ here is different from that used for the NCOC algorithm in Section

6.5.3; in particular, now we do not need to compute (C⊤)−1. Next, define q′′(x) = Ã′′η̃(x). Then,

for each j ∈ [s], we set up a weighted binary CPE problem with weights (ã′′j,y, (1− ã′′j,y)) to estimate

q′′j (x). Finally, given estimated statistics q̂′′(x) estimated in this way from the noisy training sample,

our NCOC-Ham-IFN algorithm outputs the multi-label classifier

ĥ(x) = argmin
ŷ∈Y

{1
s
∥ŷ∥1 +

s∑
j=1

[(˜̃amax − ˜̃amin) · q̂′′j (x) + ˜̃amin] ·
1− 2ŷj

s

}
.

Estimating q′′(x). Our implementation of NCOC-Ham-IFN uses weighted binary logistic loss

minimizers for the weighted CPE learners. In particular, we first learn a vector of s real-valued

functions f̂ : X→Rs by minimizing the s-dimensional convex surrogate loss ψ : Y ×Rs→R+ defined
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as

ψ(y,u) =
s∑
j=1

(
ã′′j,yϕlog(1, uj) + (1− ã′′j,y)ϕlog(0, uj)

)

over the noisy training sample S̃. Specifically, f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)) for a suitable

class of real-valued vector functions F ⊆ {f : X→Rs}. The estimated statistics are then given by

q̂′′j (x) = γ−1
log(f̂j(x)).

Detailed pseudocode is in Algorithm B.4.
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B.2. Supplement to Section 6.6

B.2.1. Proof of Theorem 6.1

In this section, we prove a more general version of Theorem 6.1 that can handle the case when

estimated noise rates ĉ(j)0,1 and ĉ(j)1,0 are used in place of the true noise rates c(j)0,1 and c(j)1,0. Therefore,

setting ĉ(j)0,1 = c
(j)
0,1 and ĉ(j)1,0 = c

(j)
1,0 for j ∈ [s] in the theorem below proves Theorem 6.1.

Theorem B.1 (More general version of Theorem 6.1). Consider Hamming loss LHam (Eq.

(6.1)) under IFN model. Assume c(j)0,1 + c
(j)
1,0 < 1 for all j ∈ [s]. Let D be any distribution on X ×Y

with corresponding noisy distribution D̃. Let ĉ(j)0,1 ≥ 0 and ĉ
(j)
1,0 ≥ 0 be estimated noise rates such

that ĉ(j)0,1 + ĉ
(j)
1,0 < 1 for j ∈ [s]. Suppose NCPLUG (Section 6.5.1) is run with noisy training sample

S̃ (in which examples are sampled i.i.d. from D̃) and estimated noise rates ĉ(j)0,1 and ĉ(j)1,0 in place of

c
(j)
0,1 and c(j)1,0, for all j ∈ [s]. Let ψ, f̂ , ĥ be as defined in Section 6.5.1. Then we have

regretL
Ham

D [ĥ] ≤ 1√
s
max
i

1

1− ĉ(i)0,1 − ĉ
(i)
1,0

√
2regretψ

D̃
[̂f ]+

2

s

s∑
j=1

|ĉ(j)0,1 + ĉ
(j)
1,0 − c

(j)
0,1 − c

(j)
1,0|+ |c

(j)
0,1(1− ĉ

(j)
1,0)− ĉ

(j)
0,1(1− c

(j)
1,0)|

(1− c(j)0,1 − c
(j)
1,0)(1− ĉ

(j)
0,1 − ĉ

(j)
1,0)

.

Moreover, if ĉ(j)0,1 = c
(j)
0,1 and ĉ(j)1,0 = c

(j)
1,0 for all j ∈ [s], the above bound can be simplified to

regretL
Ham

D [ĥ] ≤ 1√
s
max
i

1

1− c(i)0,1 − c
(i)
1,0

√
2regretψ

D̃
[̂f ] .

We will need the following lemma from Agarwal (2014) in the proof.

Lemma B.2 (Property of the binary logistic loss (Agarwal, 2014)). Recall that the binary

logistic loss ϕlog : {0, 1} × R→R+ is defined as

ϕlog(y, u) = ln(1 + e−(2y−1)u) ,
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and the invertible link function γlog : [0, 1]→R together with its inverse γ−1
log : R→[0, 1] is given by

γlog(p) = ln(
p

1− p
) ;

γ−1
log(u) =

1

1 + exp(−u)
.

Then for all q ∈ [0, 1] and u ∈ R:

EY∼Bernoulli(q)

[
ϕlog(Y, u)− ϕlog(Y, γlog(q))

]
≥ 2

(
γ−1
log(u)− q

)2
,

where Y ∼ Bernoulli(q) denotes a Bernoulli random variable that takes value 1 with probability q

and value 0 with probability 1− q.

Proof of Theorem B.1.

Proof. Recall that the multi-label surrogate ψ : Y × Rs→R+ here is given by

ψ(y,u) =

s∑
j=1

ϕlog(yj , uj) . (B.1)

Also, given q̂′j(x) = γ−1
log(f̂j(x)) estimated from S̃, the multi-label classifier output by our NCPLUG

algorithm is given by

ĥj(x) = 1
( q̂′j(x)− ĉ

(j)
0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

≥ 1
2

)
∀j ∈ [s] . (B.2)

To simplify notations, in what follows, we let L = LHam, ϕ = ϕlog, γ = γlog, f = f̂ , and h = ĥ. We

also let qj(x) = P(Yj = 1|x) and q̃j(x) = P(Ỹj = 1|x) for j ∈ [s].
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regretLD[h]

=
1

s

s∑
j=1

Ex

[
(1− 2qj(x)) · [1(

γ−1(fj(x))− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

≥ 1

2
)− 1(qj(x) ≥

1

2
)]

]

≤ 2

s

s∑
j=1

Ex

[
|
γ−1(fj(x))− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

− qj(x)|
]

=
2

s

s∑
j=1

Ex

[
|
γ−1(fj(x))− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

−
q̃j(x)− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

+
q̃j(x)− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

− qj(x)|
]

≤ 2

s

s∑
j=1

Ex

[
|
γ−1(fj(x))− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

−
q̃j(x)− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

|+ |
q̃j(x)− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

− qj(x)|
]

=
2

s

s∑
j=1

Ex

[
|
γ−1(fj(x))− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

−
q̃j(x)− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

|
]
+

2

s

s∑
j=1

Ex

[
|
q̃j(x)− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

− qj(x)|
]
. (B.3)

We bound the first sum as follows:

2

s

s∑
j=1

Ex

[
|
γ−1(fj(x))− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

−
q̃j(x)− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

|
]

=
2

s

s∑
j=1

1

1− ĉ(j)0,1 − ĉ
(j)
1,0

Ex

[
|γ−1(fj(x))− q̃j(x)|

]

≤ 2

s
max
i

1

1− ĉ(i)0,1 − ĉ
(i)
1,0

Ex

[ s∑
j=1

|γ−1(fj(x))− q̃j(x)|
]

≤ 2

s
max
i

1

1− ĉ(i)0,1 − ĉ
(i)
1,0

Ex

[√
s

√√√√ s∑
j=1

(
γ−1(fj(x))− q̃j(x)

)2]

=
2√
s
max
i

1

1− ĉ(i)0,1 − ĉ
(i)
1,0

Ex

[√√√√ s∑
j=1

(
γ−1(fj(x))− q̃j(x)

)2]
. (B.4)
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By Lemma B.2, we have

Ex

[ s∑
j=1

(
γ−1(fj(x))− q̃j(x)

)2]

≤ 1

2
Ex

[ s∑
j=1

Ey∼Bernoulli(q̃j(x))

[
ϕ(y, fj(x))− ϕ(y, γ(q̃j(x)))

]]

=
1

2
Ex

[
Ey|x∼η̃(x)

[
ψ(y, f(x))− inf

u∈Rr
ψ(y,u)

]]
=

1

2
regretψ

D̃
[f ] . (B.5)

Next, we bound the second sum in Eq. (B.3) as follows:

2

s

s∑
j=1

Ex

[
|
q̃j(x)− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

− qj(x)|
]

=
2

s

s∑
j=1

Ex

[
|
q̃j(x)− ĉ(j)0,1

1− ĉ(j)0,1 − ĉ
(j)
1,0

−
q̃j(x)− c(j)0,1

1− c(j)0,1 − c
(j)
1,0

|
]

=
2

s

s∑
j=1

Ex

[
|q̃j(x)(ĉ(j)0,1 + ĉ

(j)
1,0 − c

(j)
0,1 − c

(j)
1,0) + ĉ

(j)
0,1(c

(j)
1,0 − 1) + c

(j)
0,1(1− ĉ

(j)
1,0)|

]
(1− c(j)0,1 − c

(j)
1,0)(1− ĉ

(j)
0,1 − ĉ

(j)
1,0)

≤ 2

s

s∑
j=1

|ĉ(j)0,1 + ĉ
(j)
1,0 − c

(j)
0,1 − c

(j)
1,0|+ |c

(j)
0,1(1− ĉ

(j)
1,0)− ĉ

(j)
0,1(1− c

(j)
1,0)|

(1− c(j)0,1 − c
(j)
1,0)(1− ĉ

(j)
0,1 − ĉ

(j)
1,0)

. (B.6)

Combining Eqs. (B.3), (B.4), (B.5) and (B.6) and applying Jensen’s inequality (to the convex

function x 7→ x2), we have

regretLD[h] ≤
1√
s
max
i

1

1− ĉ(i)0,1 − ĉ
(i)
1,0

√
2regretψ

D̃
[f ]+

2

s

s∑
j=1

|ĉ(j)0,1 + ĉ
(j)
1,0 − c

(j)
0,1 − c

(j)
1,0|+ |c

(j)
0,1(1− ĉ

(j)
1,0)− ĉ

(j)
0,1(1− c

(j)
1,0)|

(1− c(j)0,1 − c
(j)
1,0)(1− ĉ

(j)
0,1 − ĉ

(j)
1,0)

.
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B.2.2. Proof of Theorem 6.2

In this section, we prove a more general version of Theorem 6.2 that can handle the case when an

estimated noise matrix Ĉ is used in place of the true noise matrix C. Therefore, setting Ĉ = C in

the theorem below proves Theorem 6.2.

Theorem B.3 (More general version of Theorem 6.2). Consider F -measure LF1 (Eq. (6.2))

under the general CCN model. Assume noise matrix C is invertible. Let D be any distribution on

X ×Y with corresponding noisy distribution D̃. Let Ĉ be an estimated (invertible) noise matrix for

the noise matrix C. Suppose NCEFP (Section 6.5.2) is run with noisy training sample S̃ (in which

examples are sampled i.i.d. from D̃) and estimated noise matrix Ĉ in place of C. Let ψ, f̂ , ĥ be as

defined in Section 6.5.2, and let A ∈ [0, 1](s
2+1)×|Y|, B ∈ R(s2+1)×|Y|, and t ∈ R|Y| be as defined in

Example 6.2. Then we have

regretL
F1

D [ĥ] ≤ 2max
ŷ
∥bŷ∥2 ·

(
∥A∥2∥(C⊤)−1 − (Ĉ⊤)−1∥2 + 2∥A∥1∥(Ĉ⊤)−1∥1s

√
2regretψ

D̃
[̂f ]

)
.

Further, if Ĉ = C, the above bound can be simplified to

regretL
F1

D [ĥ] ≤ 4smax
ŷ
∥bŷ∥2 · ∥A∥1∥(C⊤)−1∥1

√
2regretψ

D̃
[̂f ] .

We will need the following lemma from Zhang et al. (2021) in the proof.

Lemma B.4 (Property of the multiclass logistic loss (Zhang et al., 2021)). Recall that the

multiclass logistic loss ϕmlog : [n]× Rn−1 → R+ is defined as

ϕmlog(y,u) =


− ln

(
exp(uy)

1+
∑n−1

i=1 exp(ui)

)
if y ∈ [n− 1]

ln
(
1 +

∑n−1
i=1 exp(ui)

)
if y = n

,

and the invertible link function γmlog : ∆n → Rn−1 together with its inverse γ−1
mlog : Rn−1 → ∆n is
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given by

γmlog(p)=


ln( p1pn )

...

ln(pn−1

pn
)

; γ−1
mlog(u)=



exp(u1)

1+
∑n−1

i=1 exp(ui)

...
exp(un)

1+
∑n−1

i=1 exp(ui)

1
1+

∑n−1
i=1 exp(ui)


.

Then for all p ∈ ∆n and u ∈ Rn−1,

EY∼p

[
ϕmlog(Y,u)− ϕmlog(Y,γmlog(p))

]
≥ 1

2

∥∥γ−1
mlog(u)− p

∥∥2
2
.

Proof of Theorem B.3.

Proof. For clarity, we redefine here all quantities involving Ĉ. In particular, define Â = A(Ĉ⊤)−1,

âmin = min(miny â0,y,miny,jk âjk,y) and âmax = max(maxy â0,y,maxy,jk âjk,y), and let

â′0,y =
â0,y − âmin

âmax − âmin
∈ [0, 1] ,

and

â′jk,y =
âjk,y − âmin

s · (âmax − âmin)
∈ [0, 1] ∀j, k ∈ [s] .

Here, the multi-label surrogate ψ : Y × Rs2+1→R+ then becomes

ψ(y,u) = â′0,y · ϕlog(1, u0) + (1− â′0,y) · ϕlog(0, u0)+
s∑
j=1

[ s∑
k=1

â′jk,yϕmlog(k, (uj1, ..., ujs)) + (1−
s∑

k=1

â′jk,y)ϕmlog(s+ 1, (uj1, ..., ujs))
]
. (B.7)

Also, given q̂′0(x) = γ−1
log(f̂0(x)) and q̂′jk(x) =

(
γ−1

mlog(f̂j1(x), ..., f̂js(x))
)
k

estimated from S̃, the
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multi-label classifier output by our NCEFP algorithm is given by

ĥ(x) = argmin
ŷ∈Y

{
1 + [(âmax − âmin) · q̂′0(x) + âmin] · b0,ŷ

+

s∑
j=1

s∑
k=1

[s · (âmax − âmin) · q̂′jk(x) + âmin] · bjk,ŷ
}
. (B.8)

We use ⟨·, ·⟩ to denote the standard inner product. Let α̂ = (âmax− âmin) and β̂ = âmin. To simplify

notations, in what follows, we let L = LF1 , f = f̂ and h = ĥ.

We let

g(f(x), ŷ) := (α̂γ−1
log(f0(x)) + β̂) · (b0,h(x) − b0,ŷ)

+ α̂s
s∑
j=1

s∑
k=1

(γ−1
mlog(fj1(x), ..., fjs(x)))k · (bjk,h(x) − bjk,ŷ)

+ β̂
s∑
j=1

s∑
k=1

(bjk,h(x) − bjk,ŷ)

+ (th(x) − tŷ) . (B.9)
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regretLD[h]

= Ex

[
⟨η(x), ℓh(x)⟩ −min

ŷ∈Y
⟨η(x), ℓŷ⟩

]
= Ex

[
max
ŷ
⟨η(x), ℓh(x) − ℓŷ⟩

]
= Ex

[
max
ŷ
⟨η(x),A⊤bh(x) + th(x)1−A⊤bŷ − tŷ1⟩

]
= Ex

[
max
ŷ
⟨η(x),A⊤(bh(x) − bŷ) + (th(x) − tŷ)1⟩

]
= Ex

[
max
ŷ

[
⟨η(x),A⊤(bh(x) − bŷ)⟩+ (th(x) − tŷ)

]]
= Ex

[
max
ŷ

[
⟨Aη(x),bh(x) − bŷ⟩+ (th(x) − tŷ)

]]
(by property of adjoint)

= Ex

[
max
ŷ

[
⟨Aη(x),bh(x) − bŷ⟩+ (th(x) − tŷ)− g(f(x), ŷ) + g(f(x), ŷ)

]]
≤ Ex

[
max
ŷ

[
⟨Aη(x),bh(x) − bŷ⟩+ (th(x) − tŷ)− g(f(x), ŷ)

]]
(
Since by Eq. (B.8), g(f(x), ŷ) ≤ 0 for all ŷ

)
= Ex

[
max
ŷ

[
[(Aη(x))0 − α̂γ−1

log(f0(x))− β̂] · (b0,h(x) − b0,ŷ)

+

s∑
j=1

s∑
k=1

[(Aη(x))jk − α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k − β̂] · (bjk,h(x) − bjk,ŷ)

]]

≤ Ex

[
max
ŷ
∥bh(x) − bŷ∥2 ·

[
[(Aη(x))0 − α̂γ−1

log(f0(x))− β̂]
2+

s∑
j=1

s∑
k=1

[(Aη(x))jk − α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k − β̂]

2
] 1

2

]
(by the Cauchy-Schwarz inequality)

≤ 2max
ŷ
∥bŷ∥2 ·Ex

[[
[(Aη(x))0 − α̂γ−1

log(f0(x))− β̂]
2+

s∑
j=1

s∑
k=1

[(Aη(x))jk − α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k − β̂]

2
] 1

2

]
. (B.10)
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For all x ∈ X , let ζ(x) ∈ Rs2+1 be such that

ζ0(x) = α̂γ−1
log(f0(x)), ζjk(x) = α̂s(γ−1

mlog(fj1(x), ..., fjs(x)))k . (B.11)

Then Eq. (B.10) can be written as

regretLD[h] ≤ 2max
ŷ
∥bŷ∥2 ·Ex

[
∥Aη(x)− ζ(x)− β̂1∥2

]
= 2max

ŷ
∥bŷ∥2 ·Ex

[
∥Aη(x)− Âη̃(x) + Âη̃(x)− ζ(x)− β̂1∥2

]
≤ 2max

ŷ
∥bŷ∥2 ·Ex

[
∥Aη(x)− Âη̃(x)∥2 + ∥Âη̃(x)− ζ(x)− β̂1∥2

]
. (B.12)

Note that,

Ex

[
∥Aη(x)− Âη̃(x)∥2

]
= Ex

[
∥A(C⊤)−1η̃(x)−A(Ĉ⊤)−1η̃(x)∥2

]
= Ex

[
∥A
(
(C⊤)−1 − (Ĉ⊤)−1

)
η̃(x)∥2

]
≤ ∥A∥2 · ∥(C⊤)−1 − (Ĉ⊤)−1∥2 ·Ex

[
∥η̃(x)∥2

]
≤ ∥A∥2 · ∥(C⊤)−1 − (Ĉ⊤)−1∥2 . (B.13)

212



Moreover,

Ex

[
∥Âη̃(x)− ζ(x)− β̂1∥22

]
= Ex

[
[(Âη̃(x))0 − α̂γ−1

log(f0(x))− β̂]
2+

s∑
j=1

s∑
k=1

[(Âη̃(x))jk − α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k − β̂]

2

]

= Ex

[
[
∑
y

â0,y · η̃y(x)− α̂γ−1
log(f0(x))− β̂]

2+

s∑
j=1

s∑
k=1

[
∑
y

âjk,y · η̃y(x)− α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k − β̂]

2

]

= Ex

[
[
∑
y

(α̂ · â′0,y + β̂) · η̃y(x)− α̂γ−1
log(f0(x))− β̂]

2+

s∑
j=1

s∑
k=1

[
∑
y

(α̂s · â′jk,y + β̂) · η̃y(x)− α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k − β̂]

2

]

= Ex

[
[α̂(Â′η̃(x))0 − α̂γ−1

log(f0(x))]
2+

s∑
j=1

s∑
k=1

[α̂s(Â′η̃(x))jk − α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k]

2

]

= Ex

[
α̂2[(Â′η̃(x))0 − γ−1

log(f0(x))]
2 + α̂2s2

s∑
j=1

s∑
k=1

[(Â′η̃(x))jk − (γ−1
mlog(fj1(x), ..., fjs(x)))k]

2

]
.

(B.14)

Note that (Â′η̃(x))0 ∈ [0, 1]. By Lemma B.2, we have

[
(Â′η̃(x))0 − γ−1

log(f0(x))
]2

≤ 1

2
E
y∼Bernoulli

(
(Â′η̃(x))0

)[ϕlog(y, f0(x))− ϕlog(y, γlog((Â′η̃(x))0
))]

. (B.15)
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By Lemma B.4, we have

s∑
k=1

[
(Â′η̃(x))jk − (γ−1

mlog(fj1(x), ..., fjs(x)))k

]2
≤
[
1−

s∑
k=1

(Â′η̃(x))jk − 1 +
s∑

k=1

(γ−1
mlog(fj1(x), ..., fjs(x)))k

]2
+

s∑
k=1

[
(Â′η̃(x))jk − (γ−1

mlog(fj1(x), ..., fjs(x)))k

]2
≤ 2Ey∼pj(x)

[
ϕmlog

(
y, (fj1(x), ..., fjs(x))

)
− ϕmlog

(
y,γmlog

(
pj(x)

))]
, (B.16)

where pj(x) ∈ ∆s+1 is

pj(x) =



(Â′η̃(x))j1
...

(Â′η̃(x))js

1−
∑s

k=1(Â
′η̃(x))jk


. (B.17)
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Then, Eq. (B.14) becomes

Ex

[
∥Âη̃(x)− ζ(x)− β̂1∥22

]
= Ex

[
α̂2[(Â′η̃(x))0 − γ−1

log(f0(x))]
2 + α̂2s2

s∑
j=1

s∑
k=1

[(Â′η̃(x))jk − (γ−1
mlog(fj1(x), ..., fjs(x)))k]

2

]

≤ Ex

[
α̂2 1

2
E
y∼Bernoulli

(
(Â′η̃(x))0

)[ϕlog(y, f0(x))− ϕlog(y, γlog((Â′η̃(x))0
))]

+ 2α̂2s2
s∑
j=1

Ey∼pj(x)

[
ϕmlog

(
y, (fj1(x), ..., fjs(x))

)
− ϕmlog

(
y,γmlog

(
pj(x)

))]]

≤ 2α̂2s2 ·Ex
[
E
y∼Bernoulli

(
(Â′η̃(x))0

)[ϕlog(y, f0(x))− ϕlog(y, γlog((Â′η̃(x))0
))]

+

s∑
j=1

Ey∼pj(x)

[
ϕmlog

(
y, (fj1(x), ..., fjs(x))

)
− ϕmlog

(
y,γmlog

(
pj(x)

))]]

= 2α̂2s2 ·Ex
[
Ey|x∼η̃(x)

[
ψ(y, f(x))− inf

u∈Rs2+1
ψ(y,u)

]]
= 2α̂2s2 · regretψ

D̃
[f ] . (B.18)

Combining Eqs. (B.12), (B.13) and (B.18) and applying Jensen’s inequality (to the convex function

x 7→ x2), we have

regretLD[h] ≤ 2max
ŷ
∥bŷ∥2 ·

(
∥A∥2∥(C⊤)−1 − (Ĉ⊤)−1∥2 + α̂s

√
2regretψ

D̃
[f ]

)
.

We can further bound α̂ by

α̂ = âmax − âmin

≤ 2∥Â∥1

= 2∥A(Ĉ⊤)−1∥1

≤ 2∥A∥1∥(Ĉ⊤)−1∥1 .

215



B.2.3. Proof of Theorem 6.3

In this section, we prove a more general version of Theorem 6.3 that can handle the case when an

estimated noise matrix Ĉ is used in place of the true noise matrix C. Therefore, setting Ĉ = C in

the theorem below proves Theorem 6.3.

Theorem B.5 (More general version of Theorem 6.3). Consider a general low-rank loss

matrix L written as L = A⊤B + 1t⊤ for some A ∈ [0, 1]r×|Y|,B ∈ Rr×|Y|, t ∈ R|Y|, under the

general CCN model. Assume noise matrix C is invertible. Let D be any distribution on X ×Y with

corresponding noisy distribution D̃. Let Ĉ be an estimated (invertible) noise matrix for the noise

matrix C. Suppose NCOC (Section 6.5.3) is run with noisy training sample S̃ (in which examples

are sampled i.i.d. from D̃) and estimated noise matrix Ĉ in place of C. Let ψ, f̂ , ĥ be as defined in

Section 6.5.3. Then we have

regretLD[ĥ] ≤ 2max
ŷ
∥bŷ∥2 ·

(
∥A∥2∥(C⊤)−1 − (Ĉ⊤)−1∥2 + ∥A∥1∥(Ĉ⊤)−1∥1

√
2regretψ

D̃
[̂f ]

)
.

Further, if Ĉ = C, the above bound can be simplified to

regretLD[ĥ] ≤ 2max
ŷ
∥bŷ∥2 · ∥A∥1∥(C⊤)−1∥1

√
2regretψ

D̃
[̂f ] .

Proof. For clarity, we redefine here all quantities involving Ĉ. In particular, define Â = A(Ĉ⊤)−1,

âmin = miny,j âj,y and âmax = maxy,j âj,y, and let

â′j,y =
âj,y − âmin

âmax − âmin
∈ [0, 1] ∀j ∈ [r] .

Here, the multi-label surrogate ψ : Y × Rr→R+ then becomes

ψ(y,u) =

r∑
j=1

(
â′j,yϕ(1, uj) + (1− â′j,y)ϕ(0, uj)

)
. (B.19)

Also, given q̂′j(x) = γ−1
log(f̂j(x)) estimated from S̃, the multi-label classifier output by our NCOC
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algorithm is given by

ĥ(x) = argmin
ŷ∈Y

{
tŷ +

r∑
j=1

[(âmax − âmin) · q̂′j(x) + âmin] · bj,ŷ
}
. (B.20)

We use ⟨·, ·⟩ to denote the standard inner product. Let α̂ = (âmax − âmin) and β̂ = âmin. To

simplify notations, in what follows, we let ϕ = ϕlog, γ = γlog, f = f̂ , and h = ĥ. For u ∈ Rr, let

γ−1(u) ∈ [0, 1]r be such that the i-indexed entry of γ−1(u) is simply γ−1(ui).
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regretLD[h]

= Ex

[
⟨η(x), ℓh(x)⟩ −min

ŷ∈Y
⟨η(x), ℓŷ⟩

]
= Ex

[
max
ŷ
⟨η(x), ℓh(x) − ℓŷ⟩

]
= Ex

[
max
ŷ
⟨η(x),A⊤bh(x) + th(x)1−A⊤bŷ − tŷ1⟩

]
= Ex

[
max
ŷ
⟨η(x),A⊤(bh(x) − bŷ) + (th(x) − tŷ)1⟩

]
= Ex

[
max
ŷ

[
⟨η(x),A⊤(bh(x) − bŷ)⟩+ (th(x) − tŷ)

]]
= Ex

[
max
ŷ

[
⟨Aη(x),bh(x) − bŷ⟩+ (th(x) − tŷ)

]]
(by property of adjoint)

= Ex

[
max
ŷ

[
⟨Aη(x)− (α̂γ−1(f(x)) + β̂1),bh(x) − bŷ⟩+

⟨(α̂γ−1(f(x)) + β̂1),bh(x) − bŷ⟩+ (th(x) − tŷ)
]]

≤ Ex

[
max
ŷ
⟨Aη(x)− (α̂γ−1(f(x)) + β̂1),bh(x) − bŷ⟩

]
(
Since by Eq. (B.20), ⟨(α̂γ−1(f(x)) + β̂1),bh(x) − bŷ⟩+ (th(x) − tŷ) ≤ 0 for all ŷ

)
≤ Ex

[
∥Aη(x)− (α̂γ−1(f(x)) + β̂1)∥2 ·max

ŷ
∥bh(x) − bŷ∥2

]
(by the Cauchy-Schwarz inequality)

≤ 2max
ŷ
∥bŷ∥2 ·Ex

[
∥Aη(x)− (α̂γ−1(f(x)) + β̂1)∥2

]
= 2max

ŷ
∥bŷ∥2 ·Ex

[
∥Aη(x)− Âη̃(x) + Âη̃(x)− (α̂γ−1(f(x)) + β̂1)∥2

]
≤ 2max

ŷ
∥bŷ∥2 ·Ex

[
∥Aη(x)− Âη̃(x)∥2 + ∥Âη̃(x)− (α̂γ−1(f(x)) + β̂1)∥2

]
= 2max

ŷ
∥bŷ∥2 ·Ex

[
∥Aη(x)− Âη̃(x)∥2

]
+ 2max

ŷ
∥bŷ∥2 ·Ex

[
∥Âη̃(x)− (α̂γ−1(f(x)) + β̂1)∥2

]
.

(B.21)
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Note that,

Ex

[
∥Aη(x)− Âη̃(x)∥2

]
= Ex

[
∥A(C⊤)−1η̃(x)−A(Ĉ⊤)−1η̃(x)∥2

]
= Ex

[
∥A
(
(C⊤)−1 − (Ĉ⊤)−1

)
η̃(x)∥2

]
≤ ∥A∥2 · ∥(C⊤)−1 − (Ĉ⊤)−1∥2 ·Ex

[
∥η̃(x)∥2

]
≤ ∥A∥2 · ∥(C⊤)−1 − (Ĉ⊤)−1∥2 . (B.22)

Moreover,

Ex

[
∥Âη̃(x)− (α̂γ−1(f(x)) + β̂1)∥22

]
= Ex

[
∥(Â− β̂11⊤)η̃(x)− α̂γ−1(f(x))∥22

]
= Ex

[
α̂2∥(Â− β̂11

⊤)

α̂
η̃(x)− γ−1(f(x))∥22

]
= Ex

[
α̂2∥Â′η̃(x)− γ−1(f(x))∥22

]
(because Â′ =

Â− âmin11
⊤

âmax − âmin
=

Â− β̂11⊤

α̂
)

= Ex

[
α̂2

r∑
j=1

[
(Â′η̃(x))j − γ−1(fj(x))

]2]
. (B.23)

Note that (Â′η̃(x))j ∈ [0, 1]. By Lemma B.2, we have

[
(Â′η̃(x))j − γ−1(fj(x))

]2
≤ 1

2
E
y∼Bernoulli

(
(Â′η̃(x))j

)[ϕ(y, fj(x))− ϕ(y, γ((Â′η̃(x))j
))]

.
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Then Eq. (B.23) becomes

Ex

[
∥Âη̃(x)− (α̂γ−1(f(x)) + β̂1)∥22

]
= Ex

[
α̂2

r∑
j=1

[
(Â′η̃(x))j − γ−1(fj(x))

]2]

≤ Ex

[
α̂2

r∑
j=1

1

2
E
y∼Bernoulli

(
(Ã′η̃(x))j

)[ϕ(y, fj(x))− ϕ(y, γ((Â′η̃(x))j
))]]

=
α̂2

2
Ex

[
Ey|x∼η̃(x)

[
ψ(y, f(x))− inf

u∈Rr
ψ(y,u)

]]
=
α̂2

2
regretψ

D̃
[f ] . (B.24)

Combining Eqs. (B.21), (B.22) and (B.24) and applying Jensen’s inequality (to the convex function

x 7→ x2), we have

regretLD[h] ≤ 2max
ŷ
∥bŷ∥2 ·

(
∥A∥2∥(C⊤)−1 − (Ĉ⊤)−1∥2 + α̂

√
1

2
regretψ

D̃
[f ]

)
.

We can further bound α̂ by

α̂ = âmax − âmin

≤ 2∥Â∥1

= 2∥A(Ĉ⊤)−1∥1

≤ 2∥A∥1∥(Ĉ⊤)−1∥1 .
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B.3. Supplement to Section 6.7

Under an STSN model where the set of s tags T = [s] is partitioned into K (K ≤ s) groups of

tags G1, ..., GK , the label space Y ⊆ {0, 1}s contains only y ∈ {0, 1}s with ∥yGk
∥1 ≤ 1 for all

groups Gk (since each group has at most 1 active tag). In this setting as well, the output mappings

f̂(x) 7→ ĥ(x) that appear at the end of the NCEFP and NCOC algorithms, that require solving a

combinatorial optimization problem over ŷ ∈ Y, can be computed efficiently. We give details below.

Reduced low-rank decomposition for LF1 for sparse label space Y, and reduced vector

function f̂ . Let YK = {y ∈ {0, 1}s : ∥y∥1 ≤ K}. For Y ⊆ YK (as is the case under the STSN

model), in the decomposition of LF1 in Example 6.2, several entries of matrix A become 0; in

particular, ajk,y = 0 for k > K. Therefore, the factorization in this case simplifies to

ℓF1

y,ŷ = 1− 1(∥y∥1 = 0) · 1(∥ŷ∥1 = 0)−
s∑
j=1

K∑
k=1

1(∥y∥1 = k) · yj ·
2 · ŷj

k + ∥ŷ∥1
. (B.25)

In other words, we have LF1 = (Ared)⊤(Bred) + 1t⊤ where Ared ∈ [0, 1](sK+1)×|Y| with ared
0,y =

a0,y = 1(∥y∥1 = 0) and ared
jk,y = ajk,y = 1(∥y∥1 = k) · yj ∀j ∈ [s],∀k ∈ [K], Bred ∈ R(sK+1)×|Y|

with bred0,ŷ = b0,ŷ = −1(∥ŷ∥1 = 0) and bredjk,ŷ = bjk,ŷ = − 2·ŷj
k+∥ŷ∥1 ∀j ∈ [s],∀k ∈ [K], and t ∈ R|Y|

with tŷ = 1. Accordingly, the NCEFP algorithm in this case reduces to solving one binary problem

and s ((K + 1)-class) multiclass problems. The NCOC algorithm requires solving (sK + 1) binary

problems. Therefore, in both cases, one needs to learn only a (sK + 1)-dimensional real-valued

vector function f̂ : X→RsK+1; vector predictions f̂(x) then need to be mapped to the label space

Y to obtain the final multi-label predictions ĥ(x) ∈ Y. The output mappings for F1-measure below

therefore map vectors u ∈ RsK+1 to multi-label predictions ŷ ∈ Y.

NCEFP output mapping for F1-measure under STSN. Algorithm B.5 specifies the output

mapping f̂(x) 7→ ĥ(x) in this case. The complexity for computing T is O(sK2). The complexity for

the for loop is O(sK2). So the total complexity of the output mapping is O(sK2). (The procedure

here is a modification of the procedure described in Dembczynski et al. (2011); Zhang et al. (2020)

for the case when Y = {0, 1}s. The complexity of the original output mapping in that case is O(s3);
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therefore, our complexity of O(sK2) is an improvement under the STSN setting.)

Algorithm B.5 NCEFP output mapping for F1-measure under STSN

1: Input: Vector u =
(
u0, (ujk)j=1,...,s,k=1,...,K

)⊤ ∈ RsK+1

2: Define matrices Q ∈ [0, 1]s×K and V ∈ RK×K as follows:

Qj,k = s(ãmax − ãmin)(γ
−1
mlog(uj1, ..., ujs))k + ãmin

Vk,l =
−2
k + l

3: Compute T = QV
4: For l = 1 . . .K: // K is the number of groups
5: For each group Gk, define glk = argminj∈Gk

{Tj,l}
6: Find the l smallest numbers among {Tgl1,l, ..., TglK ,l}; call them Tjl1,l

, . . . , Tjll ,l
7: Define ŷl,∗ ∈ Y ∩ {y ∈ {0, 1}s : ∥y∥1 = l} as follows:

ŷl,∗j =

{
1 if j ∈ {jl1, . . . , jll}
0 otherwise.

8: Set z∗l =
∑s

j=1 ŷ
l,∗
j Tj,l

9: End for
10: Pick ŷ∗ as follows:

ŷ∗ ∈ argmin
ŷ∈{0, ŷ1,∗,..., ŷK,∗}

−1(ŷ = 0) · ((ãmax − ãmin)γ
−1
log(u0) + ãmin) + 1(ŷ ̸= 0) · z∗∥ŷ∥1

11: Output: ŷ∗ ∈ Y

NCOC output mapping for Hamming loss under STSN. Algorithm B.6 specifies the output

mapping f̂(x) 7→ ĥ(x) in this case. The total complexity is O(s).

NCOC output mapping for F1-measure under STSN. Algorithm B.7 specifies the output

mapping f̂(x) 7→ ĥ(x) in this case (Algorithm B.7 differs from Algorithm B.5 in line 2.). The

complexity for computing T is O(sK2). The complexity for the for loop is O(sK2). So the total

complexity of the output mapping is O(sK2). (The procedure here is a modification of the procedure

described in Dembczynski et al. (2011); Zhang et al. (2020) for the case when Y = {0, 1}s. The

complexity of the original output mapping in that case is O(s3); therefore, our complexity of O(sK2)

is an improvement under the STSN setting.)
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Algorithm B.6 NCOC output mapping for Hamming loss under STSN
1: Input: Vector u ∈ Rs
2: Define ŷ ∈ {0, 1}s as follows:

ŷj =

{
1 if (ãmax − ãmin)γ

−1
log(uj) + ãmin >

1
2

0 otherwise.

3: For k = 1 . . .K: // K is the number of groups
4: if ∥ŷGk

∥1 > 1:
5: Set ŷj = 0 for all j ∈ Gk
6: Define jk = argmaxj∈Gk

(ãmax − ãmin)γ
−1
log(uj) + ãmin, and set ŷjk = 1

7: End if
8: End for
9: Output: ŷ ∈ Y

Algorithm B.7 NCOC output mapping for F1-measure under STSN

1: Input: Vector u =
(
u0, (ujk)j=1,...,s,k=1,...,K

)⊤ ∈ RsK+1

2: Define matrices Q ∈ [0, 1]s×K and V ∈ RK×K as follows:

Qj,k = (ãmax − ãmin)γ
−1
log(ujk) + ãmin

Vk,l =
−2
k + l

3: Compute T = QV
4: For l = 1 . . .K: // K is the number of groups
5: For each group Gk, define glk = argminj∈Gk

{Tj,l}
6: Find the l smallest numbers among {Tgl1,l, ..., TglK ,l}; call them Tjl1,l

, . . . , Tjll ,l
7: Define ŷl,∗ ∈ Y ∩ {y ∈ {0, 1}s : ∥y∥1 = l} as follows:

ŷl,∗j =

{
1 if j ∈ {jl1, . . . , jll}
0 otherwise.

8: Set z∗l =
∑s

j=1 ŷ
l,∗
j Tj,l

9: End for
10: Pick ŷ∗ as follows:

ŷ∗ ∈ argmin
ŷ∈{0, ŷ1,∗,..., ŷK,∗}

−1(ŷ = 0) · ((ãmax − ãmin)γ
−1
log(u0) + ãmin) + 1(ŷ ̸= 0) · z∗∥ŷ∥1

11: Output: ŷ∗ ∈ Y
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B.4. Supplement to Section 6.8

B.4.1. Synthetic data: data generating process for F1-measure under STSN

We generated a multi-label dataset with instances x in X = R100 and s = 10 tags with K = 5

groups G = {{1, 2, 3}, {4, 5, 6}, {7, 8}, {9}, {10}}, so |Y| = 192 and ∥y∥1 ≤ K = 5 for all y ∈ Y. By

the reduced factorization of LF1 in Eq. (B.25) in Section B.3, in this case, Ared ∈ [0, 1](sK+1)×|Y| =

[0, 1]51×192 consists of:

ared
0,y = 1(∥y∥1 = 0) ; ared

jk,y = 1(∥y∥1 = k) · yj ∀j ∈ [s], ∀k ∈ [K] .

We first fixed matrix W ∈ [0.1, 1]51×100 with entries drawn uniformly; we checked that W has full

row rank. We also fixed a vector α ∈ [0.01, 0.02]192 with entries drawn uniformly. To generate a

data point (x,y), we then did the following: we first sampled η(x) ∈ ∆192 ≡ ∆|Y| from Dirichlet(α).

We set q(x) = Aredη(x) ∈ [0, 1]51. We then took x = W†q(x), and drew y ∼ η(x), where W†

denotes the pseudo-inverse of W.

B.4.2. Synthetic data: data generating process for Hamming loss under IFN

We generated a multi-label dataset with instances x in X = R100 and s = 8. Here, Y = {0, 1}8.

By the factorization of LHam in Eq. (6.3), in this case, A ∈ [0, 1]s×2s = [0, 1]8×256. We first

fixed matrix W ∈ [0.1, 1]8×100 with entries drawn uniformly; we checked that W has full row

rank. Since labels y in real data tend to be very sparse (have few active tags), we simulated this

observation by considering a subset of Y, denoted by Y4, that contains labels y with ∥y∥1 ≤ 4, so

Y4 = {y ∈ Y : ∥y∥1 ≤ 4}. Then we fixed a vector α ∈ [0.01, 0.02]|Y4| with entries drawn uniformly.

To generate a data point (x,y), we first sampled η̄(x) ∈ ∆|Y4| from Dirichlet(α). Then we set

η(x) ∈ ∆2s ≡ ∆|Y| as follows: for y ∈ Y, if y ∈ Y4, set the y-indexed entry of η(x) to be the

value in the y-indexed entry of η̄(x); if y /∈ Y4, then set the y-indexed entry of η(x) to be a small

value 10−3. Afterwards, we re-normalized η(x). We set q(x) = Aη(x) ∈ [0, 1]8. We then took

x = W†q(x), and drew y ∼ η(x), where W† denotes the pseudo-inverse of W.

224



B.4.3. Synthetic data: additional implementation details

For all synthetic data experiments (and for all algorithms in the experiments), we used the Adam

optimizer (Kingma and Ba, 2015) provided by PyTorch (Paszke et al., 2019) with batch size 100

and no weight decay. The optimizer was run for 50 epochs over the training sample; the learning

rate parameter was initially set to 0.01 and was halved at the end of every 5 epochs.

B.4.4. Real data: additional implementation details for experiments on Mediamill data

Regularization parameters were chosen by cross-validation from {0, 10−3, 10−2, 10−1, 1}. We used

the Adam optimizer provided by PyTorch with batch size 100. The optimizer was run for 50 epochs

over the training sample; the learning rate parameter was initially set to 0.01 and was halved at the

end of every 5 epochs.

B.4.5. Real data: additional implementation details for experiments on Multi-MNIST data

Hamming loss under IFN. We chose the following neural network architecture for all algo-

rithms:31

model = torch . nn . Sequent i a l (

torch . nn . Conv2d (1 , 32 , 3 , padding=1) ,

torch . nn .ReLU( ) ,

torch . nn . MaxPool2d (2 , 2 ) ,

torch . nn . Conv2d (32 , 64 , 3 , padding=1) ,

torch . nn .ReLU( ) ,

torch . nn . MaxPool2d (2 , 2 ) ,

torch . nn . Conv2d (64 , 128 , 3 , padding=1) ,

torch . nn .ReLU( ) ,

torch . nn . MaxPool2d (2 , 2 ) ,

torch . nn . F lat ten ( ) ,

torch . nn . LazyLinear (128) ,

31We used the Adagrad optimizer (Duchi et al., 2011) provided by PyTorch with batch size 128 and weight decay
0.001. The optimizer was run for 50 epochs over the training sample; the learning rate parameter was initially set to
0.01 and was tuned automatically by the optimizer.
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torch . nn .ReLU( ) ,

torch . nn . LazyLinear ( output_dim )

)

Hamming loss and F1-measure under STSN. For Hamming loss under STSN, we chose the

following neural network architecture for all algorithms:32

model = torch . nn . Sequent i a l (

torch . nn . Conv2d (1 , 32 , 3 , padding=1) ,

torch . nn .ReLU( ) ,

torch . nn . MaxPool2d (2 , 2 ) ,

torch . nn . Conv2d (32 , 64 , 3 , padding=1) ,

torch . nn .ReLU( ) ,

torch . nn . MaxPool2d (2 , 2 ) ,

torch . nn . Conv2d (64 , 128 , 3 , padding=1) ,

torch . nn .ReLU( ) ,

torch . nn . MaxPool2d (2 , 2 ) ,

torch . nn . F lat ten ( ) ,

torch . nn . LazyLinear (128) ,

torch . nn .ReLU( ) ,

torch . nn . LazyLinear ( output_dim )

)

For F1-measure under STSN, we chose the following neural network architecture for all algorithms:33

model = torch . nn . Sequent i a l (

32We used the Adagrad optimizer provided by PyTorch with batch size 128 and weight decay 0. The optimizer
was run for 50 epochs over the training sample; the learning rate parameter was initially set to 0.01 and was tuned
automatically by the optimizer.

33We used the Adagrad optimizer provided by PyTorch with batch size 128 and weight decay 0. The optimizer
was run for 50 epochs over the training sample; the learning rate parameter was initially set to 0.01 and was tuned
automatically by the optimizer.
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torch . nn . Conv2d (1 , 32 , 3 , padding=1) ,

torch . nn .ReLU( ) ,

torch . nn . MaxPool2d (2 , 2 ) ,

torch . nn . Conv2d (32 , 64 , 3 , padding=1) ,

torch . nn .ReLU( ) ,

torch . nn . MaxPool2d (2 , 2 ) ,

torch . nn . Conv2d (64 , 128 , 3 , padding=1) ,

torch . nn .ReLU( ) ,

torch . nn . MaxPool2d (2 , 2 ) ,

torch . nn . F lat ten ( ) ,

torch . nn . LazyLinear (512) ,

torch . nn .ReLU( ) ,

torch . nn . LazyLinear ( output_dim )

)
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APPENDIX C

SUPPLEMENTAL MATERIAL FOR CHAPTER 7

Proposition C.1. CD is a convex set.

Proof. Let C and C′ be two confusion matrices in CD. There exist randomized classifiers h, h′ :

X → ∆n such that C = CD[h] and C′ = CD[h′]. For any γ ∈ [0, 1], γh+ (1− γ)h′ is a randomized

classifier. So

γCi,j + (1− γ)C ′
i,j

= γP(X,Y )∼D,Y ′∼h(X)(Y = i, Y ′ = j) + (1− γ)P(X,Y )∼D,Y ′∼h′(X)(Y = i, Y ′ = j)

= P(X,Y )∼D(X,Y )
[
γPY ′∼h(X)(Y = i, Y ′ = j|X,Y ) + (1− γ)PY ′∼h′(X)(Y = i, Y ′ = j)

]
= P(X,Y )∼D(X,Y )PY ′∼γh(X)+(1−γ)h′(X)(Y = i, Y ′ = j|X,Y )

= CDi,j [γh+ (1− γ)h′] .

It follows that γC+ (1− γ)C′ = CD[γh+ (1− γ)h′] ∈ CD.

Learning from noisy labels for monotonic convex performance measures.

Theorem C.2 (Form of Bayes optimal classifier for monotonic convex ψ in the noisy label setting).

Let D be a distribution such that η(X) is a continuous random vector. Assume that monotonic

convex performance measure ψ is differentiable over CD. Let h∗ : X → ∆n be a Bayes optimal

classifier for ψ-performance w.r.t. D.34 Define L∗ = (T⊤)−1∇ψ(CD[h∗]). Then any Bayes optimal

classifier for L∗-performance w.r.t. D̃ is also Bayes optimal for ψ-performance w.r.t. D.

Lemma C.3 (Lemma 25 of Narasimhan et al. (2015)). Let D be a distribution such that η(X) is

a continuous random vector. Let L ∈ Rn×n be such that no two columns are identical. Denote by
34The existence of such a classifier is guaranteed by Lemma 12 of Narasimhan et al. (2015).
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CD the closure of CD. Then,

argmin
C∈CD

⟨L,C⟩ = argmin
C∈CD

⟨L,C⟩ .

Moreover, the above set is a singleton.

Proof of Theorem C.2.

Proof. We first show

argmin
C̃∈C

D̃

⟨L∗, C̃⟩ = argmin
C̃∈C

D̃

⟨L∗, C̃⟩ , (C.1)

and the above set is a singleton.

Since D is a distribution such that η(X) is a continuous random vector, η̃(X) = Tη(X) is a

continuous random vector as well. By the monotonic condition on ψ, ∇ψ(CD[h∗]) has negative

diagonal entries and non-negative off-diagonal entries. So no two columns of ∇ψ(CD[h∗]) are

identical. Because L∗ is (T⊤)−1∇ψ(CD[h∗]) and T is invertible, it follows that no two columns of

L∗ are identical. Applying Lemma C.3 establishes the claim above.

Let C̃∗ = argmin
C̃∈C

D̃
⟨L∗, C̃⟩. Since L∗ is (T⊤)−1∇ψ(CD[h∗]), we have

⟨L∗, C̃∗⟩ = ⟨(T⊤)−1∇ψ(CD[h∗]), C̃∗⟩ . (C.2)

Recall h∗ : X → ∆n is a Bayes optimal classifier for ψ-performance w.r.t. D. Lemma 12 of

Narasimhan et al. (2015) shows CD[h∗] = argminC∈CD ψ(C). Since ψ is differentiable over CD and

CD is convex, by first order optimality condition, for all C ∈ CD,

⟨∇ψ(CD[h∗]),CD[h∗]⟩ ≤ ⟨∇ψ(CD[h∗]),C⟩ . (C.3)
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We are now ready show any Bayes optimal classifier for L∗-performance w.r.t. D̃ is also Bayes

optimal for ψ-performance w.r.t. D.

For Bayes optimal classifier g∗ for L∗-performance w.r.t. D̃, we have CD̃[g∗] = C̃∗ due to the

singleton set in Eq. (C.1). By Eqs. (C.2) and (C.3),

⟨L∗,CD̃[g∗]⟩ = ⟨(T⊤)−1∇ψ(CD[h∗]),CD̃[g∗]⟩

= ⟨∇ψ(CD[h∗]),T−1CD̃[g∗]⟩

= ⟨∇ψ(CD[h∗]),CD[g∗]⟩

≥ ⟨∇ψ(CD[h∗]),CD[h∗]⟩ .

On the other hand,

⟨∇ψ(CD[h∗]),CD[h∗]⟩ = ⟨(T⊤)−1∇ψ(CD[h∗]),TCD[h∗]⟩

= ⟨L∗,TCD[h∗]⟩

≥ ⟨L∗,CD̃[g∗]⟩ .

So, we have

⟨∇ψ(CD[h∗]),CD[g∗]⟩ = ⟨L∗,CD̃[g∗]⟩ = ⟨∇ψ(CD[h∗]),CD[h∗]⟩ .

By Lemma C.3 and Eq. (C.3), this means CD[g∗] = CD[h∗]. So, g∗ is also Bayes optimal for

ψ-performance measure w.r.t. D.

Learning from noisy labels for ratio-of-linear performance measures.

Theorem C.4 (Form of Bayes optimal classifier for ratio-of-linear ψ in the noisy label setting).

Consider ratio-of-linear performance measure ψ(C) = ⟨A,C⟩
⟨B,C⟩ with ⟨B,C⟩ > 0 ∀C ∈ CD. Let Ψψ,∗

D =

infC∈CD ψ(C) be the Bayes optimal ψ-performance w.r.t. D. Let L∗ = (T⊤)−1(A−Ψψ,∗
D B). Then

any Bayes optimal classifier for L∗-performance w.r.t. D̃ is also Bayes optimal for ψ-performance
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w.r.t. D.

Proof. Let L′ = T⊤L∗ = (A − Ψψ,∗
D B). Theorem 11 of Narasimhan et al. (2015) shows that any

Bayes optimal classifier for L′-performance w.r.t. D is also Bayes optimal for for ψ-performance

w.r.t. D. By Proposition 7.1, any Bayes optimal classifier for L∗-performance w.r.t. D̃ is also Bayes

optimal for L′-performance w.r.t. D. The claim follows.
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