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Abstract

There has been much interest in recent years
in learning good classifiers from data with
noisy labels. Most work on learning from
noisy labels has focused on standard loss-
based performance measures. However, many
machine learning problems require using non-
decomposable performance measures which
cannot be expressed as the expectation or
sum of a loss on individual examples; these
include for example the H-mean, Q-mean and
G-mean in class imbalance settings, and the
Micro F1 in information retrieval. In this pa-
per, we design algorithms to learn from noisy
labels for two broad classes of multiclass non-
decomposable performance measures, namely,
monotonic convex and ratio-of-linear, which
encompass all the above examples. Our work
builds on the Frank-Wolfe and Bisection based
methods of Narasimhan et al. (2015). In
both cases, we develop noise-corrected ver-
sions of the algorithms under the widely stud-
ied family of class-conditional noise models.
We provide regret (excess risk) bounds for
our algorithms, establishing that even though
they are trained on noisy data, they are Bayes
consistent in the sense that their performance
converges to the optimal performance w.r.t.
the clean (non-noisy) distribution. Our exper-
iments demonstrate the effectiveness of our
algorithms in handling label noise.

1 INTRODUCTION
In many machine learning problems, the labels provided
with the training data may be noisy. This can happen
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due to a variety of reasons, such as sensor measure-
ment errors, human labeling errors, and data collection
errors among others. Therefore, there has been much
interest in recent years in learning good classifiers from
data with noisy labels (Frénay and Verleysen, 2014;
Song et al., 2020; Han et al., 2020). Most work has
focused on learning from noisy labels for standard loss-
based performance measures; these include both the
0-1 loss and more general cost-sensitive losses, all of
which are linear functions of the confusion matrix of a
classifier. However, many machine learning problems
require using non-decomposable performance measures
which cannot be expressed as the expectation or sum
of a loss on individual examples; these are general non-
linear functions of the confusion matrix, and include
for example the H-mean, Q-mean and G-mean in class
imbalance settings (Sun et al., 2006; Kennedy et al.,
2009; Lawrence et al., 2012; Wang and Yao, 2012), and
the Micro F1 in information retrieval (Manning et al.,
2008; Kim et al., 2013). In this paper, we design algo-
rithms to learn from noisy labels for two broad classes
of multiclass non-decomposable performance measures,
namely, monotonic convex and ratio-of-linear, which
encompass all the above examples.

The main challenge in learning from noisy labels is
to design algorithms which, given training data with
noisy labels, can still learn accurate classifiers w.r.t. the
clean/true distribution for a given target performance
measure. For loss-based (linear) performance measures,
previous works have designed Bayes consistent algo-
rithms so that, when given sufficient noisy training data,
their performance converges to the Bayes optimal per-
formance w.r.t. the clean distribution (Natarajan et al.,
2013; Scott et al., 2013; Scott, 2015; Menon et al., 2015;
Liu and Tao, 2016; Patrini et al., 2016; Ghosh et al.,
2017; van Rooyen and Williamson, 2017; Patrini et al.,
2017; Natarajan et al., 2017; Wang et al., 2018; Liu
and Guo, 2020; Zhang et al., 2021; Li et al., 2021). In
this work, we provide similarly Bayes consistent noise-
corrected algorithms for multiclass monotonic convex
and ratio-of-linear performance measures, under the
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Table 1: Position of Our Work Relative to Previous Work on Consistent Learning Under CCN Model
Performance Measures Standard (Non-noisy) Setting Noisy Setting Under CCN Model
Loss-based (linear) Many algorithms including surrogate

risk minimization algorithms
Many noise-corrected algorithms
(Natarajan et al., 2013; van Rooyen and
Williamson, 2017; Patrini et al., 2017;
Zhang et al., 2021)

Monotonic convex Frank-Wolfe based method This work
(Narasimhan et al., 2015)

Ratio-of-linear Bisection based method This work
(Narasimhan et al., 2015)

widely studied family of class-conditional noise (CCN)
models. Our work builds on the Frank-Wolfe and Bisec-
tion based methods of Narasimhan et al. (2015), which
were proposed for the standard (non-noisy) setting. Ta-
ble 1 summarizes the position of our work relative to
other consistent algorithms under the CCN model.

Our key contributions include the following:

• Algorithms: We develop noise-corrected versions
of the Frank-Wolfe and Bisection based algorithms
for the families of monotonic convex and ratio-of-
linear performance measures, respectively.

• Theory: While the noise corrections we introduce
are fairly intuitive, establishing the correctness of
the resulting algorithms is not trivial. We provide
regret (excess risk) bounds for our algorithms, es-
tablishing that even though they are trained on
noisy data, they are Bayes consistent in the sense
that their performance converges to the optimal
performance w.r.t. the clean (non-noisy) distri-
bution. The bounds quantify the effect of label
noise on the sample complexity. We also provide
extended regret bounds that quantify the effect of
using an estimated noise matrix.

• Empirical validations: We provide results of
experiments on synthetic data verifying the sample
complexity behavior of our algorithms, and also
on real data comparing with previous baselines.

1.1 Related Work

Consistent algorithms for binary/multiclass clas-
sification for non-decomposable performance
measures in the standard (non-noisy) setting.
Most work in this category has focused on binary clas-
sification, for a variety of performance measures, in-
cluding F-measure (Ye et al., 2012), the arithmetic
mean of the true positive and true negative rates (AM)
(Menon et al., 2013), ratio-of-linear performance mea-
sures (Koyejo et al., 2014; Bao and Sugiyama, 2020),
and monotonic performance measures (Narasimhan
et al., 2014). Dembczynski et al. (2017) revisited
consistency analysis in binary classification for non-
decomposable performance measures for two distinct
settings and notions of consistency (Population Utility

and Expected Test Utility). For multiclass classifica-
tion, Narasimhan et al. (2015) developed a general
framework for designing provably consistent algorithms
for monotonic convex and ratio-of-linear performance
measures; an extended version of this work also stud-
ies such performance measures in constrained learn-
ing settings (Narasimhan et al., 2022). Parambath
et al. (2014); Koyejo et al. (2015); Natarajan et al.
(2016) also designed algorithms for some multiclass
non-decomposable performance measures. All of these
works designed algorithms for standard (non-noisy)
settings. Our methods, which build on Narasimhan
et al. (2015), are designed to correct for noisy labels
for monotonic convex and ratio-of-linear performance
measures, with provable consistency guarantees.

Consistent algorithms for binary/multiclass
learning from noisy labels for the 0-1 or cost-
sensitive losses. For the CCN model in binary classifi-
cation, many consistent algorithms have been proposed
and analyzed (Natarajan et al., 2013; Scott et al., 2013;
Menon et al., 2015; Liu and Tao, 2016; Patrini et al.,
2016; Liu and Guo, 2020). Scott et al. (2013); Scott
(2015); Menon et al. (2015); Liu and Tao (2016) also
proposed consistent estimators for noise rates when
they are not known (additional assumptions required).
Scott et al. (2013); Menon et al. (2015) studied the more
general mutually contaminated distributions (MCD)
noise model for binary classification, and proposed con-
sistent algorithms. Natarajan et al. (2017) studied
cost-sensitive loss functions. Progress has also been
made in instance-dependent and label-dependent noise
(ILN) model (Menon et al., 2018; Cheng et al., 2020).
For the multiclass CCN model, Ghosh et al. (2017); van
Rooyen and Williamson (2017); Patrini et al. (2017);
Wang et al. (2018); Zhang et al. (2021); Li et al. (2021)
proposed consistent algorithms. All the methods above
are designed to handle noisy labels for loss-based perfor-
mance measures; our work, on the other hand, focuses
on non-decomposable performance measures.

Consistent algorithms for binary learning from
noisy labels for non-decomposable performance
measures. The method in Scott et al. (2013) focused
on the minmax error. Menon et al. (2015) focused
mostly on the balanced error (BER) and area under
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the ROC curve (AUC) metrics. Both studied the MCD
model (which includes CCN model). All these results
are for binary classification. Our proposed algorithms,
under the CCN model, are designed for monotonic
convex and ratio-of-linear performance measures in
both binary and multiclass classification settings.

Performance measures in multi-label classifica-
tion and structured prediction. There is also a
line of work studying performance measures (e.g., Ham-
ming loss and F -measure) in multi-label classification
and structured prediction problems (Zhang and Zhou,
2014; Li et al., 2016; Wang et al., 2017; Zhang et al.,
2020), but those are distinct from (albeit related to)
non-decomposable performance measures in multiclass
classification settings as considered in this work.

1.2 Organization and Notation

Organization. After preliminaries and background in
Section 2, we describe our noise-corrected algorithms
for two broad classes of non-decomposable performance
measures (monotonic convex and ratio-of-linear) in
Section 3 and Section 4, respectively. Section 5 provides
consistency guarantees for our algorithms in the form of
regret bounds. Section 6 summarizes our experiments.
Section 7 concludes the paper. All proofs can be found
in Appendix A.

Notation. For an integer n, we denote by [n] the set of
integers {1, . . . , n}, and by ∆n the probability simplex
{p ∈ Rn+ :

∑n
y=1 py = 1}. For a vector a, we denote

by ∥a∥p the p-norm of a, and by aj the j-th entry of
a. For a matrix A, we denote by ∥A∥p the induced
matrix p-norm of A, and by aj the j-th column vector
of A. We use Ai,j to denote the (i, j)-th entry of A.
In addition, we use ∥A∥vec,p = (

∑
i,j |A

p
i,j |)1/p for the

matrix analogue of the vector p-norm.1 For matrices
A,B ∈ Rn×n, we define ⟨A,B⟩ =

∑
i,j Ai,jBi,j . The

indicator function is 1(·).

2 PRELIMINARIES AND
BACKGROUND

Multiclass learning from noisy labels. Let X be
the instance space, and Y be the label space. With-
out loss of generality, we assume Y = [n] = {1, ..., n}.
There is an unknown distribution D over X × Y. In
a standard multiclass learning problem, the learner is
given labeled examples (X,Y ) drawn from D. How-
ever, when learning from noisy labels, the learner is
only given noisy examples (X, Ỹ ), where Ỹ is the cor-
responding noisy label for Y . The learner’s goal is to
learn a classifier using the noisy training sample, so that

1Note that ∥A∥1 and ∥A∥∞ in Narasimhan et al. (2015)
are ∥A∥vec,1 and ∥A∥vec,∞ in our notations. We choose to
follow conventional definitions of the matrix norm in the
literature instead.

its performance is good w.r.t. the clean distribution.

We consider the class-conditional noise (CCN) model
(Natarajan et al., 2013; van Rooyen and Williamson,
2017; Patrini et al., 2017), in which a label Y = y is
switched by the noise process to Ỹ = ỹ with probability
P(Ỹ = ỹ|Y = y) that only depends on y (and not on
x). This noise can be fully described by a column
stochastic matrix.
Definition 1 (Class-conditional noise matrix). The
class-conditional noise matrix, T ∈ [0, 1]n×n, is column
stochastic with entries Ti,j = P(Ỹ = i|Y = j).
We assume T is invertible. In practice, T often needs
to be estimated; several methods have been developed
to estimate T from the noisy sample (Xia et al., 2019;
Yao et al., 2020; Li et al., 2021). Our algorithms and
theoretical guarantees work with both known T and
estimated T̂.

We can then view the noisy training examples as being
drawn i.i.d. from a noisy distribution D̃ on X × Y.
Specifically, to generate (X, Ỹ ), an example (X,Y ) is
firstly drawn according to D, and then Y is switched
to Ỹ according to noise matrix T.

Non-decomposable performance measure. To
measure the performance of a classifier h : X → [n], or
more generally, a randomized classifier h : X → ∆n

(which for a given instance x, predicts a label y accord-
ing to the probability specified by h(x)), we consider
performance measures that are general functions of
confusion matrices.
Definition 2 (Confusion matrix). The confusion ma-
trix of a (possibly randomized) classifier h w.r.t. a
distribution D, denoted by CD[h], has entries CDi,j [h] =
P(X,Y )∼D,Y ′∼h(X)(Y = i, Y ′ = j), where Y ′ ∼ h(X)
denotes a random draw of label from distribution h(X)
when h is randomized.
Definition 3 (Performance measure). For any func-
tion ψ : Rn×n → R+, define the ψ-performance mea-
sure of h w.r.t. D as

ΨψD[h] = ψ(CD[h]) .

We adopt the convention that lower values of Ψ corre-
spond to better performance.
The following shows this formulation of performance
measure includes the common loss-based performance
measures (e.g., the 0-1 loss and cost-sensitive losses).
Example 1 (L-performance measures). Consider a
multiclass loss matrix L ∈ Rn×n, where Ly,ŷ is the loss
incurred for predicting ŷ when the true class is y. Then
for a deterministic classifier h,

ΨL
D[h] = E(X,Y )∼D

[
LY,h(X)

]
= ⟨L,CD[h]⟩ .

In fact, loss-based performance measures are linear
functions of confusion matrices. For nonlinear ψ, ψ-
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performance measures are non-decomposable, i.e., they
cannot be expressed as the expected loss on a new
example drawn from D. Common examples of such
non-decomposable performance measures include Micro
F1 in information retrieval (Manning et al., 2008; Kim
et al., 2013), H-mean, Q-mean and G-mean in class
imbalance settings (Kennedy et al., 2009; Lawrence
et al., 2012; Sun et al., 2006; Wang and Yao, 2012),
and others.2

Learning goal. Given a noisy training sample S̃
drawn according to the noisy distribution D̃, the goal
of the learner is to learn a (randomized) classifier
h : X → ∆n that performs well w.r.t. D for a pre-
specified ψ-performance measure. In particular, we
want the performance of h to converge (in probabil-
ity) to Bayes optimal ψ-performance as the training
sample size increases. Below we define Bayes opti-
mal ψ-performance as the optimal value over feasible
confusion matrices.

Definition 4 (Feasible confusion matrices). Feasible
confusion matrices w.r.t. D are all possible confusion
matrices achieved by randomized classifiers. Define CD
as the set of feasible confusion matrices w.r.t. D as

CD = {CD[h] : h : X → ∆n} .
We note that CD is a convex set (Narasimhan et al.
(2015)).

Definition 5 (Bayes optimal ψ-performance). For
any function ψ : Rn×n → R+, define the Bayes optimal
ψ-performance w.r.t. D as

Ψψ,∗D = inf
h:X→∆n

ΨψD[h] = inf
h:X→∆n

ψ(CD[h]) = inf
C∈CD

ψ(C) .

In the following sections, we focus on two broad classes
of non-decomposable performance measures, namely
monotonic convex and ratio-of-linear. The former in-
cludes H-mean, Q-mean and G-mean, and the latter
includes Micro F1.

3 MONOTONIC CONVEX
PERFORMANCE MEASURES

Our work develops noise-corrected versions of the al-
gorithms of Narasimhan et al. (2015). Below, we de-
scribe two key operations on which the algorithms in
Narasimhan et al. (2015) are built; we then describe
our noise-corrected algorithm for monotonic convex
performance measures. We will show how we use the
noise matrix T to correct the two operations to learn
from noisy labels. We note that the noise correction
operations work with estimated T̂ as well. We start
with the definition and some examples of monotonic
convex performance measures.

Definition 6 (Monotonic convex performance mea-

2See Table 1 of Narasimhan et al. (2015).

sures). A performance measure ψ : Rn×n → R+ is
monotonic convex if for any confusion matrix C, ψ(C)
is convex in C, and monotonically (strictly) decreasing
in Ci,i and non-decreasing in Ci,j for i ̸= j.
Example 2 (H-mean, Q-mean and G-mean, all in loss
forms). H-mean: ψ(C) = 1 − n

(∑n
i=1

∑n
j=1 Ci,j

Ci,i

)−1,

Q-mean: ψ(C) =

√
1
n

∑n
i=1

(
1− Ci,i∑n

j=1 Ci,j

)2, and G-

mean: ψ(C) = 1−
(∏n

i=1
Ci,i∑n

j=1 Ci,j

) 1
n .

Next, we sketch the idea behind the algorithms in
Narasimhan et al. (2015), and show how to introduce
noise corrections to learn from noisy labels. We first
define the class probability function.
Definition 7 (Class probability function, class proba-
bility for short). For D, the class probability function
η : X → ∆n is defined as ηy(X) = P(Y = y|X) for
y ∈ [n]. Similarly for D̃, we define η̃ : X → ∆n as
η̃ỹ(X) = P(Ỹ = ỹ|X) for ỹ ∈ [n].

Idea behind algorithms in the standard (non-
noisy) setting (Narasimhan et al., 2015). The
algorithmic framework optimizes the non-decomposable
performance measure ψ of interest through an iterative
approach (based on the Frank-Wolfe method for the
monotonic convex case, and based on the bisection
method for the ratio-of-linear case; details later), which
in each iteration t, approximates the target performance
measure ψ by a linear loss-based performance measure
Lt. Each iteration involves two key operations: OP1
and OP2. OP1 involves finding an optimal classifier
for the current linear approximation Lt. This is done
by using a class probability estimator (CPE) η̂ learned
from the (clean) training sample, and then defining
classifier ĝt : X → [n] as ĝt(x) = argminy∈[n] η̂(x)

⊤ℓty.
OP2 involves estimating CD[ĝt], the confusion matrix
of ĝt w.r.t. D, by ĈS [ĝt], the empirical confusion
matrix of ĝt w.r.t. sample S = ((xi, yi))

m
i=1 ∼ Dm

defined below:

ĈS
j,k[ĝ

t] =
1

m

m∑
i=1

1(yi = j, ĝt(xi) = k) . (1)

Note that ĈS [ĝt] converges to CD[ĝt] as m increases.
(More specifically, to facilitate consistency analysis, the
iterative algorithms split the training sample S into
S1 and S2. S1 is used to learn a CPE model η̂, and
in each iterative step t, S2 is used to calculate ĈS2 [ĝt]
via OP2.)

Noise-corrected algorithm for monotonic convex
performance measures. We are now ready to de-
scribe our approach. In learning from noisy labels, the
algorithm only sees noisy sample S̃. Our approach is to
introduce noise corrections to both OP1 and OP2, so
the modified algorithm can still output a good classifier
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w.r.t. the clean distribution D.

Noise-corrected OP1. Recall OP1 involves finding
an optimal classifier for a loss-based performance mea-
sure Lt w.r.t. D. To do so with a noisy sample, we pro-
pose to find an optimal classifier for a noise-corrected
loss-based performance measure (Lt)′ = (T⊤)−1Lt

w.r.t. D̃ according to the following proposition.

Proposition 8. Let L′ = (T⊤)−1L. Then any Bayes
optimal classifier for L′-performance w.r.t. D̃ is also
Bayes optimal for L-performance w.r.t. D.

This idea has also been used in multiclass noisy label set-
tings with L-performance (van Rooyen and Williamson,
2017; Zhang et al., 2021).

Noise-corrected OP2. Recall OP2 is to estimate
CD[ĝt]. We need to do so with noisy sample S̃. We
first observe a relation between clean confusion matrix
CD[ĝt] and noisy confusion matrix CD̃[ĝt] under noise
matrix T.

Proposition 9. For a given classifier h, the relation
between clean confusion matrix CD and noisy confusion
matrix CD̃ under CCN matrix T is CD̃[h] = TCD[h].

So we propose to estimate CD[ĝt] by T−1ĈS̃ [ĝt]. In
Section 5, we will show this gives a consistent estimate,
i.e., T−1ĈS̃ [ĝt] converges to CD[ĝt] as the size of S̃
increases.

We can now incorporate the noise-corrected OP1 and
OP2 into the iterative algorithm based on Frank-Wolfe
method (Frank and Wolfe, 1956; Narasimhan et al.,
2015). The noise-corrected algorithm is summarized in
Algorithm 1. This algorithm applies to monotonic con-
vex performance measures ψ, such as H-mean, Q-mean
and G-mean. It seeks to solve minC∈CD

ψ(C) with the
noisy sample S̃. Note that the form ∇ψ(·) in Line 7
comes from the form of Bayes optimal classifier for
monotonic convex performance measures in the stan-
dard (non-noisy) setting (Theorem 13 of Narasimhan
et al. (2015)). Specifically, Algorithm 1 maintains
Ct implicitly via ht. At each step t, it applies noise-
corrected OP1 and OP2 to construct a loss matrix
(Lt)′ and solve a linear minimization problem, and to
compute an empirical confusion matrix. The final ran-
domized classifier hT is a convex combination of all the
classifiers h0, h1, ..., hT−1. In Section 5, we will formally
prove the noise-corrected algorithm is consistent.

4 RATIO-OF-LINEAR
PERFORMANCE MEASURES

We now move to the next family of non-decomposable
performance measures, namely ratio-of-linear perfor-
mance measures. We start with the definition and an
example. Then we will show how to use the noise-
corrected OP1 and OP2 described in Section 3 to build

Algorithm 1 Noise-Corrected Frank-Wolfe
(NCFW) Based Algorithm for Monotonic Con-
vex Performance Measures (See Section 3 for
details.)
1: Input: 1) Performance measure ψ : [0, 1]n×n → R+

that is convex over CD; 2) Noisy training sample
S̃ = ((xi, ỹi))

m
i=1 ∈ (X × Y)m; 3) Noise matrix T

(or estimated noise matrix T̂)
2: Parameter: Number of iterative steps T ∈ N
3: Split S̃ into S̃1 and S̃2, each with size m

2

4: Run a CPE learner on S̃1: ̂̃η = CPE(S̃1)
5: Initialize: h0 : X → ∆n, C0 = ĈS̃2 [h0]
6: for t = 1 to T do
7: Calculate noise-corrected loss-based performance

measure (Lt)′ = (T⊤)−1∇ψ(T−1Ct−1)

8: Obtain ĝt = x 7→ argminy∈[n]
̂̃η(x)⊤(ℓty)′ and

update ht = (1− 2
t+1 )h

t−1 + 2
t+1 ĝ

t

9: Calculate Γt = ĈS̃2 [ĝt] and update Ct = (1 −
2
t+1 )C

t−1 + 2
t+1Γ

t

10: end for
11: Output: hT

an algorithm to learn from noisy labels for ratio-of-
linear performance measures. We will also provide
another view of the algorithm from the perspective of
correcting the performance measure ψ.
Definition 10 (Ratio-of-linear performance measures).
A performance measure ψ : Rn×n → R+ is ratio-of-
linear if there are A,B ∈ Rn×n such that for any
confusion matrix C, ⟨B,C⟩ > 0 and ψ(C) = ⟨A,C⟩

⟨B,C⟩ .

Example 3 (Micro F1 in loss form). Micro F1: ψ(C) =

1− 2
∑n

i=2 Ci,i

2−
∑n

i=1 C1,i−
∑n

i=1 Ci,1
.

Noise-corrected algorithm for ratio-of-linear per-
formance measures. The iterative algorithm based
on Bisection method (Lemaréchal, 2006; Narasimhan
et al., 2015) follows broadly a similar idea as described
in Section 3, so we can use the same noise-corrected OP1
and OP2 to modify the algorithm. The noise-corrected
algorithm is summarized in Algorithm 2. This algo-
rithm applies to ratio-of-linear performance measures
ψ, such as Micro F1. It uses a binary search approach
to find the minimum value of minC∈CD

ψ(C). Note
that the form A−γB in Line 7 comes from the form of
Bayes optimal classifier for ratio-of–linear performance
measures in the standard (non-noisy) setting (Theorem
11 of Narasimhan et al. (2015)). Again, Algorithm
2 maintains Ct implicitly via ht. At each step t, it
applies noise-corrected OP1 and OP2 to construct a
loss matrix (Lt)′ and solve a linear minimization prob-
lem, and to compute an empirical confusion matrix.
The final classifier hT is deterministic. In Section 5,
we will formally prove the noise-corrected algorithm is
consistent.
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Algorithm 2 Noise-Corrected Bisection (NCBS)
Based Algorithm for Ratio-of-linear Perfor-
mance Measures (See Section 4 for details.)

1: Input: 1) Performance measure ψ(C) = ⟨A,C⟩
⟨B,C⟩

with A,B ∈ Rn×n; 2) Noisy training sample S̃ =
((xi, ỹi))

m
i=1 ∈ (X × Y)m; 3) Noise matrix T (or

estimated noise matrix T̂)
2: Parameter: Number of iterative steps T ∈ N
3: Split S̃ into S̃1 and S̃2, each with size m

2

4: Run a CPE learner on S̃1: ̂̃η = CPE(S̃1)
5: Initialize: h0 : X → [n], α0 = 0, β0 = 1
6: for t = 1 to T do
7: Calculate noise-corrected loss (Lt)′ =

(T⊤)−1(A− γtB) where γt = (αt−1 + βt−1)/2

8: Obtain ĝt = x 7→ argminy∈[n]
̂̃η(x)⊤(ℓty)′ and

calculate Γt = ĈS̃2 [ĝt]
9: if ψ(T−1Γt) ≤ γt then αt = αt−1, βt = γt, ht =

ĝt else αt = γt, βt = βt−1, ht = ht−1

10: end for
11: Output: hT

We also offer another view of Algorithm 2 from the
perspective of correcting ψ. In particular, we show
that one can construct a noise-corrected performance
measure ψ̃, which is also ratio-of-linear. Then one
can simply optimize ψ̃ using a noisy sample to learn a
classifier h, and the learned h will also be optimal for
the original performance measure ψ w.r.t. the clean
distribution D.

Theorem 11 (Form of Bayes optimal classifier for
ratio-of-linear ψ by correcting ψ). Consider ratio-
of-linear performance measure ψ(C) = ⟨A,C⟩

⟨B,C⟩ with
⟨B,C⟩ > 0 ∀C ∈ CD. Define noise-corrected per-
formance measure ψ̃ : Rn×n → R+ by ψ̃ = ψ ◦ T−1.
Then ψ̃(C̃) = ⟨(T⊤)−1A,C̃⟩

⟨(T⊤)−1B,C̃⟩
with ⟨(T⊤)−1B, C̃⟩ > 0 for

all C̃ ∈ CD̃. Moreover, any Bayes optimal classifier
for ψ̃-performance w.r.t. D̃ is also Bayes optimal for
ψ-performance w.r.t. D.

Therefore, one can view Algorithm 2 as finding the
Bayes optimal classifier for ψ̃ w.r.t. the noisy distribu-
tion D̃, which in turn is also Bayes optimal for ψ w.r.t.
the clean distribution D. This view is reminiscent of
the Unbiased Estimator approach in van Rooyen and
Williamson (2017) and Backward method in Patrini
et al. (2017), in which one optimizes noise-corrected
surrogate losses using a noisy sample to learn classifiers
that are optimal w.r.t. the clean distribution.

5 CONSISTENCY AND REGRET
BOUNDS

In this section, we derive quantitative regret bounds for
our noise-corrected algorithms. Our results show that

when the CPE learner used in the algorithms is consis-
tent (i.e., it converges to the noisy class probabilities),
then the noise-corrected algorithms are consistent, i.e.,
they can output classifiers whose ψ-performance con-
verges to the Bayes optimal ψ-performance w.r.t. D
as the size of the noisy training sample S̃ increases. In
addition, we provide regret bounds for our algorithms
when estimated T̂ is used instead of T. To start, we
formally define what it means for a learning algorithm
to be ψ-consistent when learning from noisy labels.

Definition 12 (ψ-regret). For any function ψ :
Rn×n → R+ and classifier h : X → ∆n, define
ψ-regret of h w.r.t. D as the difference between ψ-
performance of h and the Bayes optimal ψ-performance:
regretψD[h] = ΨψD[h]−Ψψ,∗D .

Definition 13 (ψ-consistent algorithm when learning
from noisy labels). For ψ : Rn×n → R+, we say a
multiclass algorithm A : ∪∞

m=1D̃
m → (X → ∆n), which

given a noisy sample S̃ of size m outputs a (randomized)
classifier A(S̃), is consistent for ψ w.r.t. D if for all
ϵ > 0:

PS̃∼D̃m

(
regretψD[A(S̃)] > ϵ

)
→ 0 as m→ ∞ .

In Appendix A, we provide guarantees for the noise-
corrected OP1 and OP2 (Lemma 18 and Lemma 19).
They are used in deriving the following regret bounds.

Theorem 14 (ψ-regret bound for Algorithm 1). Let
ψ : Rn×n → R+ be monotonic convex over CD, and L-
Lipschitz and β-smooth w.r.t. L1 norm.3 Noisy sample
S̃ = ((xi, ỹi))

m
i=1 ∈ (X × [n])m is drawn randomly from

D̃m. Let ̂̃η : X→∆n be the CPE model learned from S̃1

as in Algorithm 1. Then for δ ∈ (0, 1], with probability
at least 1− δ (over S̃ ∼ D̃m), we have

regretψD[h
T ] ≤ 4L

∥∥T−1
∥∥
1
EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+

8β

T + 2

+ 4
√
2βn3C

∥∥T−1
∥∥
1

√
n2 log(n) log(m) + log(n2/δ)

m
,

where C > 0 is a distribution-independent constant.

Theorem 15 (ψ-regret bound for Algorithm 2).
Let ψ(C) = ⟨A,C⟩

⟨B,C⟩ for A,B ∈ Rn×n with
minC∈CD

⟨B,C⟩ ≥ b for some b > 0. Noisy sample
S̃ = ((xi, ỹi))

m
i=1 ∈ (X × [n])m is drawn randomly from

D̃m. Let ̂̃η : X→∆n be the CPE model learned from S̃1

as in Algorithm 2. Then for δ ∈ (0, 1], with probability
at least 1− δ (over S̃ ∼ D̃m), we have

regretψD[h
T ] ≤ 2τ

∥∥T−1
∥∥
1
EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+ 2−T

+ 2
√
2τnC

∥∥T−1
∥∥
1

√
n2 log(n) log(m) + log(n2/δ)

m
,

where τ = 1
b

(
∥A∥vec,1 + ∥B∥vec,1

)
and C > 0 is a

3A function ψ is β-smooth if its gradient is β-Lipschitz.
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distribution-independent constant.

In particular, using a strongly/strictly proper compos-
ite surrogate loss (e.g., multiclass logistic regression
loss/cross entropy loss with softmax function) over a
universal function class (with suitable regularization)
to learn a CPE model ensures a consistent noisy class
probability estimation, i.e., EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
→ 0

as the sample size increases (Agarwal, 2014; Williamson
et al., 2016; Zhang et al., 2021). This leads to the con-
vergence of the regret to zero as m→ ∞, T → ∞. Also,
as the amount of label noise (captured by

∥∥T−1
∥∥
1
) in-

creases, the bounds get larger; one might therefore need
a larger noisy sample size to achieve the same level
of ψ-regret w.r.t. D. Our synthetic experiments also
confirm this sample complexity behavior.

Regret bounds with estimated T̂. When noise
matrix T is not known, one may need to use estimated
T̂. Several methods have been developed to estimate
T from the noisy sample (Xia et al., 2019; Yao et al.,
2020; Li et al., 2021). Below, we provide regret bounds
for our noise-corrected algorithms when estimated T̂ is
used. They involve an additional factor

∥∥T̂−1 −T−1
∥∥
1

that quantifies the quality of the estimated T̂.

Theorem 16 (ψ-regret bound for Algorithm 1 with
estimated T̂). Let ψ, S̃ and ̂̃η be specified as in Theo-
rem 14. Let T̂ be an estimate of T. Then for δ ∈ (0, 1],
with probability at least 1− δ (over S̃ ∼ D̃m), we have

regretψD[h
T ] ≤ 4L

∥∥T−1
∥∥
1
EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+

8β

T + 2

+ 4
√
2βn3C

∥∥T−1
∥∥
1

√
n2 log(n) log(m) + log(n2/δ)

m

+ (4L+ 4βn2)
∥∥T̂−1 −T−1

∥∥
1
,

where C > 0 is a distribution-independent constant.

Theorem 17 (ψ-regret bound for Algorithm 2 with
estimated T̂). Let ψ, S̃ and ̂̃η be specified as in Theo-
rem 15. Let T̂ be an estimate of T. Then for δ ∈ (0, 1],
with probability at least 1− δ (over S̃ ∼ D̃m), we have

regretψD[h
T ] ≤ 2τ

∥∥T−1
∥∥
1
EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+ 2−T

+ 2
√
2τnC

∥∥T−1
∥∥
1

√
n2 log(n) log(m) + log(n2/δ)

m

+ 4τ
∥∥T̂−1 −T−1

∥∥
1
,

where τ = 1
b

(
∥A∥vec,1 + ∥B∥vec,1

)
and C > 0 is a

distribution-independent constant.

6 EXPERIMENTS

We conducted two sets of experiments. In the first
set of experiments, we generated synthetic data and
tested the sample complexity behavior of our algo-
rithms. In the second set of experiments, we used
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Figure 1: Sample Complexity Behavior of Our Noise-
corrected Algorithms NCFW (top) and NCBS (bottom)

real data and compared our algorithms with other algo-
rithms. Our code is available at https://github.com/
moshimowang/noisy-labels-non-decomposable.

Sample complexity behavior. We tested the sample
complexity behavior of our algorithm on synthetic data
generated from a known distribution (see Appendix B
for the data generating process). We generated noise
matrices by choosing a noise level σ ∈ [0, 1] and setting
diagonal entries of T to 1− σ and off-diagonal entries
of T to σ

2 . We tested the sample complexity behavior
of our algorithms for a variety of noise matrices T with
increasing values of noise level σ = 0.1, 0.2, 0.3, 0.4, 0.6.
The corresponding values of ∥T−1∥1 were also increas-
ing. The non-decomposable performance measures
were Q-mean and Micro F1. We applied Algorithm 1
for Q-mean with T = 5000 and Algorithm 2 for Micro
F1 with T = 200. In both algorithms, the CPE learner
was implemented by minimizing the multiclass logistic
regression loss (aka. cross entropy loss with softmax
function) over linear functions. We ran the algorithms
on noisy training samples with increasing sizes (102, 103,
104, 105), and measured the performance on a clean
test set of 105 examples. The results are shown in
Figure 1. The top plot shows results for Q-mean. The
bottom plot shows results for Micro F1. We see that,
as suggested by our regret bounds, as ∥T−1∥1 increases
(i.e., more noise), the sample size required to achieve a
given level of performance generally increases.

Comparison with other algorithms. We con-
ducted experiments on several real data sets taken
from UCI Machine Learning Repository (Dua and Graff,
2017). Details of the data sets are in Appendix C. We
compared our noise-corrected algorithms (NCFW and
NCBS) with the baseline Frank-Wolfe (FW) and Bisec-
tion (BS) based methods of Narasimhan et al. (2015,
2022) that were designed for the standard (non-noisy)
learning setting, as well as various previously proposed

https://github.com/moshimowang/noisy-labels-non-decomposable
https://github.com/moshimowang/noisy-labels-non-decomposable
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Table 2: Comparison with Other Algorithms for H-mean Loss
Data sets Algorithms σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
vehicle FW 0.255 (0.005) 0.267 (0.011) 0.309 (0.007) 0.373 (0.010)

NCFW 0.254 (0.007) 0.266 (0.015) 0.307 (0.008) 0.338 (0.013)
NCLR-Backward 0.482 (0.024) 0.573 (0.020) 0.512 (0.033) 0.508 (0.021)
NCLR-Forward 0.512 (0.035) 0.563 (0.021) 0.570 (0.011) 0.563 (0.029)
NCLR-Plug-in 0.515 (0.016) 0.567 (0.010) 0.517 (0.028) 0.540 (0.015)

pageblocks FW 0.380 (0.041) 0.286 (0.011) 0.633 (0.097) 0.627 (0.066)
NCFW 0.269 (0.017) 0.253 (0.006) 0.535 (0.019) 0.528 (0.034)
NCLR-Backward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Forward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Plug-in 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.926 (0.066)

satimage FW 0.188 (0.005) 0.224 (0.005) 0.247 (0.006) 0.340 (0.006)
NCFW 0.186 (0.005) 0.222 (0.006) 0.230 (0.005) 0.300 (0.005)
NCLR-Backward 0.556 (0.023) 0.630 (0.026) 0.685 (0.043) 0.960 (0.012)
NCLR-Forward 0.542 (0.020) 0.522 (0.011) 0.612 (0.030) 0.877 (0.017)
NCLR-Plug-in 0.679 (0.049) 0.793 (0.023) 0.854 (0.031) 0.902 (0.021)

covtype FW 0.569 (0.001) 0.591 (0.001) 0.771 (0.010) 0.741 (0.009)
NCFW 0.525 (0.001) 0.569 (0.001) 0.606 (0.002) 0.706 (0.004)
NCLR-Backward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Forward 0.995 (0.001) 0.987 (0.002) 0.980 (0.002) 0.963 (0.005)
NCLR-Plug-in 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

abalone FW 0.806 (0.014) 0.799 (0.006) 0.812 (0.006) 0.801 (0.010)
NCFW 0.797 (0.008) 0.795 (0.006) 0.804 (0.008) 0.814 (0.010)
NCLR-Backward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Forward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Plug-in 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

Table 3: Comparison with Other Algorithms for Micro F1 Loss
Data sets Algorithms σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
vehicle BS 0.268 (0.007) 0.307 (0.006) 0.323 (0.013) 0.388 (0.012)

NCBS 0.264 (0.008) 0.299 (0.006) 0.314 (0.011) 0.346 (0.009)
NCLR-Backward 0.435 (0.020) 0.524 (0.006) 0.508 (0.027) 0.494 (0.028)
NCLR-Forward 0.470 (0.031) 0.483 (0.020) 0.548 (0.016) 0.553 (0.030)
NCLR-Plug-in 0.494 (0.022) 0.488 (0.023) 0.491 (0.025) 0.521 (0.015)

pageblocks BS 0.231 (0.009) 0.323 (0.011) 0.862 (0.005) 0.899 (0.006)
NCBS 0.251 (0.008) 0.261 (0.010) 0.320 (0.006) 0.404 (0.020)
NCLR-Backward 0.515 (0.050) 0.457 (0.055) 0.756 (0.079) 0.510 (0.048)
NCLR-Forward 0.823 (0.083) 0.880 (0.048) 0.743 (0.113) 0.832 (0.093)
NCLR-Plug-in 0.609 (0.096) 0.595 (0.107) 0.568 (0.051) 0.795 (0.045)

satimage BS 0.219 (0.004) 0.224 (0.002) 0.242 (0.002) 0.313 (0.003)
NCBS 0.219 (0.004) 0.220 (0.003) 0.236 (0.002) 0.292 (0.002)
NCLR-Backward 0.215 (0.004) 0.222 (0.003) 0.227 (0.004) 0.231 (0.003)
NCLR-Forward 0.217 (0.003) 0.214 (0.002) 0.213 (0.003) 0.221 (0.003)
NCLR-Plug-in 0.234 (0.002) 0.236 (0.003) 0.255 (0.002) 0.300 (0.003)

covtype BS 0.361 (0.000) 0.355 (0.000) 0.362 (0.000) 0.362 (0.000)
NCBS 0.361 (0.000) 0.352 (0.000) 0.362 (0.000) 0.362 (0.000)
NCLR-Backward 0.384 (0.000) 0.385 (0.000) 0.388 (0.000) 0.390 (0.001)
NCLR-Forward 0.384 (0.000) 0.380 (0.000) 0.381 (0.001) 0.382 (0.001)
NCLR-Plug-in 0.398 (0.000) 0.396 (0.001) 0.397 (0.000) 0.397 (0.000)

abalone BS 0.731 (0.007) 0.746 (0.005) 0.746 (0.003) 0.750 (0.002)
NCBS 0.729 (0.007) 0.743 (0.005) 0.740 (0.003) 0.754 (0.001)
NCLR-Backward 0.787 (0.005) 0.789 (0.007) 0.797 (0.010) 0.793 (0.011)
NCLR-Forward 0.774 (0.007) 0.806 (0.004) 0.783 (0.003) 0.794 (0.009)
NCLR-Plug-in 0.789 (0.005) 0.789 (0.009) 0.803 (0.007) 0.799 (0.010)

noise-corrected versions of multiclass logistic regres-
sion (NCLR-Backward (van Rooyen and Williamson,
2017; Patrini et al., 2017), NCLR-Forward (Patrini
et al., 2017), and NCLR-Plug-in (Zhang et al., 2021)).
We used the authors’ implementations for FW and

BS.4 To ensure a fair comparison, we also implemented
our algorithms in the same framework. Different vari-
ants of NCLR were implemented based on Patrini et al.

4https://github.com/shivtavker/
constrained-classification.

https://github.com/shivtavker/constrained-classification
https://github.com/shivtavker/constrained-classification


Mingyuan Zhang and Shivani Agarwal

(2017).5 A linear function class is used in all algorithms;
see Appendix C for more details.

To generate noise matrices T, we chose a noise level
σ ∈ [0, 1], set diagonal entries of T to 1 − σ, and set
off-diagonal entries uniformly at random from [0, 1] so
that each column of T sums to 1. This makes sure
that on average, 100σ percent of clean labels were
flipped to other labels, i.e., σ ≈ 1

m

∑m
i=1 1(yi ̸= ỹi).

Therefore, higher value of σ means a higher noise level.
We generated 4 noise matrices with σ = 0.1, 0.2, 0.3, 0.4
according to this process. Training labels were flipped
randomly according to the prescribed noise matrix T.

We ran FW and NCFW for T = 5000 iterative steps,
and ran BS and NCBS for T = 200 iterative steps.
Performance of the learned model was then measured
on a clean test set. The results are summarized in
Table 2 (for H-mean loss) and Table 3 (for Micro F1

loss), shown as the mean (with standard error of the
mean in parentheses) over 5 random 7 : 3 train-test
splits. Higher σ is a high noise level. For each data
set and each noise level, the best performance is shown
in bold font. The results for G-mean loss and Q-mean
loss can be found in Appendix C. As expected, in
most cases, NCFW and NCBS outperform FW and
BS, respectively, and they outperform variants of noise-
corrected multiclass logistic regression as well.

7 CONCLUSION
We have provided the first known noise-corrected algo-
rithms, NCFW and NCBS, for multiclass monotonic
convex and ratio-of-linear performance measures under
general class-conditional noise models. We have also
provided regret bounds for our algorithms showing that
they are consistent w.r.t. the clean data distribution,
and quantifying the effect of noise on their sample
complexity. Our experiments have demonstrated the
effectiveness of our algorithms in handling label noise.
For settings where the noise matrix T may be unknown,
approaches for estimating T have been proposed in the
literature. These can be combined with our algorithms
where needed, and we have also provided regret bounds
for our algorithms when estimated T̂ is used.
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Supplementary Materials

A Proofs

A.1 Proofs for Section 3

Proof of Proposition 8.

Proof. Let h∗ be a Bayes optimal classifier for (T⊤)−1L-performance w.r.t. D̃. So

inf
C̃∈C

D̃

⟨(T⊤)−1L, C̃⟩ = ⟨(T⊤)−1L,CD̃[h∗]⟩

= ⟨L,T−1CD̃[h∗]⟩
= ⟨L,CD[h∗]⟩ ,

where we have used properties of the adjoint in the second “=”.

Note that for any C ∈ CD, we have

⟨L,C⟩ = ⟨(T⊤)−1L,TC⟩

≥ inf
C̃∈C

D̃

⟨(T⊤)−1L, C̃⟩

= ⟨L,CD[h∗]⟩ .

So h∗ is also Bayes optimal for L-performance w.r.t. D, i.e., ⟨L,CD[h∗]⟩ = ΨL,∗
D .

Proof of Proposition 9.

Proof.

CD̃i,j [h] = P(Ỹ = i, h(X) = j)

= P(Ỹ = i|h(X) = j)P(h(X) = j)

=
∑
k∈[n]

P(Ỹ = i, Y = k|h(X) = j)P(h(X) = j)

=
∑
k∈[n]

P(Ỹ = i|Y = k)P(Y = k|h(X) = j)P(h(X) = j)

=
∑
k∈[n]

Ti,k ·P(Y = k|h(X) = j)P(h(X) = j)

=
∑
k∈[n]

Ti,k ·P(Y = k, h(X) = j)

=
∑
k∈[n]

Ti,k · CDkj [h] .
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A.2 Proofs for Section 4

Proof of Theorem 11.

Proof. By property of adjoint, we have

ψ̃(C̃) = ψ ◦T−1(C̃) = ψ
(
T−1C̃

)
=

⟨A,T−1C̃⟩
⟨B,T−1C̃⟩

=
⟨(T⊤)−1A, C̃⟩
⟨(T⊤)−1B, C̃⟩

.

For all C̃ ∈ CD̃, there exists C ∈ CD such that C̃ = TC. So,

⟨(T⊤)−1B, C̃⟩ = ⟨B,C⟩ > 0 .

This shows ⟨(T⊤)−1B, C̃⟩ > 0 for all C̃ ∈ CD̃.

Let h∗ be a Bayes optimal classifier for ψ̃-performance w.r.t. D̃ (the existence of such a classifier is guaranteed by
Theorem 11 of Narasimhan et al. (2015)). So,

inf
C̃∈C

D̃

ψ̃(C̃) = ψ̃(CD̃[h∗])

=
⟨(T⊤)−1A,CD̃[h∗]⟩
⟨(T⊤)−1B,CD̃[h∗]⟩

=
⟨(T⊤)−1A,TCD[h∗]⟩
⟨(T⊤)−1B,TCD[h∗]⟩

=
⟨A,CD[h∗]⟩
⟨B,CD[h∗]⟩

.

For all C ∈ CD,

ψ(C) =
⟨A,C⟩
⟨B,C⟩

≥ inf
C′∈CD

⟨A,C′⟩
⟨B,C′⟩

= inf
C′∈CD

⟨(T⊤)−1A,TC′⟩
⟨(T⊤)−1B,TC′⟩

= inf
C̃∈C

D̃

ψ̃(C̃)

=
⟨A,CD[h∗]⟩
⟨B,CD[h∗]⟩

.

This shows h∗ is also Bayes optimal for ψ-performance w.r.t. D.

A.3 Proofs for Section 5

Lemma 18 (Guarantee for noise-corrected OP1). Let ̂̃η : X→∆n be the CPE model learned from noisy sample
S̃. Then

EX

[∥∥T−1 ̂̃η(X)− η(X)
∥∥
1

]
≤

∥∥T−1
∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
.

Proof of Lemma 18.

Proof.

EX

[∥∥T−1 ̂̃η(X)− η(X)
∥∥
1

]
= EX

[∥∥T−1 ̂̃η(X)−T−1η̃(X)
∥∥
1

]
≤

∥∥T−1
∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
.
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Lemma 19 (Guarantee for noise-corrected OP2). For h : X → ∆n, let ĈS̃ [h] be the empirical confusion matrix
w.r.t. noisy sample S̃ (computed similarly as ĈS [h] in Eq. (1)). Then∥∥CD[h]−T−1ĈS̃ [h]

∥∥
vec,∞

≤ n
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
vec,∞ .

Proof of Lemma 19.

Proof. ∥∥CD[h]−T−1ĈS̃ [h]
∥∥

vec,∞ =
∥∥T−1CD̃[h]−T−1ĈS̃ [h]

∥∥
vec,∞

≤
∥∥T−1CD̃[h]−T−1ĈS̃ [h]

∥∥
1

≤
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
1

≤ n
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
vec,∞ .

Notes for Lemma 18 and Lemma 19: In Lemma 18, T−1 ̂̃η(x) might be viewed as an estimate for η(x).
If the CPE model used is consistent (i.e., EX

[∥∥̂̃η(X) − η̃(X)
∥∥
1

]
→ 0 as the sample size increases), then this

estimation is consistent as well. Similarly, in Lemma 19, T−1ĈS̃ [h] might be viewed as an estimate for CD[h].
Because the confusion matrix estimator in Eq. (1) is consistent (i.e.,

∥∥CD̃[h]− ĈS̃ [h]
∥∥

vec,∞ → 0 as the sample
size increases) as shown in Lemma 15 of Narasimhan et al. (2015), this estimation is also consistent.

∥∥T−1
∥∥
1

might be viewed as a constant capturing the overall amount of label noise.

Notes for our proof of Theorem 14: Our proof of Theorem 14 uses Lemma 14, Lemma 15 and Theorem 16
in Narasimhan et al. (2015), along with their proofs. We include a proposition below that summarizes the key
aspects of Lemma 14, Lemma 15 and Theorem 16 in Narasimhan et al. (2015) that we make use of (with slight
modification in order for it to be consistent with our notations).

Proposition 20 (ψ-regret bound of Frank-Wolfe based algorithm in the non-noisy setting; Theorem 16 in
Narasimhan et al. (2015)). Let ψ : Rn×n → R+ be monotonic convex over CD, and L-Lipschitz and β-smooth
w.r.t. L1 norm. Let clean sample S = ((xi, yi))

m
i=1 ∈ (X × [n])m be drawn randomly from Dm. Let η̂ : X→∆n

be the CPE model learned from S1 as in the Frank-Wolfe based algorithm, and hFWS : X → ∆n be the classifier
returned after T iterations. Let δ ∈ (0, 1]. Then with probability ≥ 1− δ (over S ∼ Dm),

regretψD[h
FW
S ] ≤ 4LEX

[∥∥η̂(X)− η(X)
∥∥
1

]
+

8β

T + 2

+ 4βn2 sup
h∈Hη̂

∥∥CD[h]− ĈS2 [h]
∥∥

vec,∞

≤ 4LEX

[∥∥η̂(X)− η(X)
∥∥
1

]
+

8β

T + 2

+ 4
√
2βn2C

√
n2 log(n) log(m) + log(n2/δ)

m
,

where C > 0 is a distribution-independent constant, and Hη̂ = {h : X → [n], h(x) = argminy∈[n] η̂(x)
⊤ℓy,L ∈

Rn×n}. The second ‘≤’ was obtained by Lemma 15 of Narasimhan et al. (2015) and |S2| = m/2.

Proof of Theorem 14.

Proof. In Algorithm 1, we only have noisy sample S̃ that is split into S̃1 and S̃2. We implicitly estimate η by
T−1 ◦ ̂̃η, where ̂̃η : X→∆n is a CPE model learned from S̃1. Lemma 18 shows an additional factor of

∥∥T−1
∥∥
1

as a price paid to learn from a noisy sample instead of a clean one. For a classifier h, we estimate CD[h] by
T−1ĈS̃2 [h], where ĈS̃2 [h] is the empirical confusion matrix learned from S̃2. Lemma 19 shows an additional factor
of n

∥∥T−1
∥∥
1

as a cost to learn from a noisy sample instead of a clean one. Note that Hη̂ = Ĥ̃η for η̂ = T−1 ◦ ̂̃η.
Chaining this reasoning with Proposition 20 establishes the claim.
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Notes for our proof of Theorem 15: Our proof of Theorem 15 uses Lemma 14, Lemma 15 and Theorem 17
in Narasimhan et al. (2015), along with their proofs. We include a proposition below that summarizes the key
aspects of Lemma 14, Lemma 15 and Theorem 17 in Narasimhan et al. (2015) that we make use of (with slight
modification in order for it to be consistent with our notations).

Proposition 21 (ψ-regret bound for bisection based algorithm in the non-noisy setting; Theorem 17 in Narasimhan
et al. (2015)). Let ψ(C) = ⟨A,C⟩

⟨B,C⟩ for A,B ∈ Rn×n with minC∈CD
⟨B,C⟩ ≥ b for some b > 0. Let clean sample

S = ((xi, yi))
m
i=1 ∈ (X × [n])m be drawn randomly from Dm. Let η̂ : X→∆n be the CPE model learned from S1

as in the bisection based algorithm, and hBS
S : X → ∆n be the classifier returned after T iterations. Let δ ∈ (0, 1].

Then with probability ≥ 1− δ (over S ∼ Dm),

regretψD[h
BS
S ] ≤ 2τEX

[∥∥η̂(X)− η(X)
∥∥
1

]
+ 2−T

+ 2τ sup
h∈Hη̂

∥∥CD[h]− ĈS2 [h]
∥∥

vec,∞

≤ 2τEX

[∥∥η̂(X)− η(X)
∥∥
1

]
+ 2−T

+ 2
√
2Cτ

√
n2 log(n) log(m) + log(n2/δ)

m
,

where τ = 1
b

(
∥A∥vec,1 + ∥B∥vec,1

)
, C > 0 is a distribution-independent constant, and Hη̂ = {h : X → [n], h(x) =

argminy∈[n] η̂(x)
⊤ℓy,L ∈ Rn×n}. The second ‘≤’ was obtained by Lemma 15 of Narasimhan et al. (2015) and

|S2| = m/2.

Proof of Theorem 15.

Proof. In Algorithm 2, we only have noisy sample S̃ that is split into S̃1 and S̃2. We implicitly estimate η by
T−1 ◦ ̂̃η, where ̂̃η : X→∆n is a CPE model learned from S̃1. Lemma 18 shows an additional factor of

∥∥T−1
∥∥
1

as a price paid to learn from a noisy sample instead of a clean one. For a classifier h, we estimate CD[h] by
T−1ĈS̃2 [h], where ĈS̃2 [h] is the empirical confusion matrix learned from S̃2. Lemma 19 shows an additional factor
of n

∥∥T−1
∥∥
1

as a cost to learn from a noisy sample instead of a clean one. Note that Hη̂ = Ĥ̃η for η̂ = T−1 ◦ ̂̃η.
Chaining this reasoning with Proposition 21 establishes the claim.

Lemma 22 (Guarantee for noise-corrected OP1 with estimated T̂). Let ̂̃η : X→∆n be the CPE model learned
from noisy sample S̃. Let T̂ be an estimate of T. Then

EX

[∥∥T̂−1 ̂̃η(X)− η(X)
∥∥
1

]
≤

∥∥T−1
∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+

∥∥T̂−1 −T−1
∥∥
1
.

Proof of Lemma 22.

Proof.

EX

[∥∥T̂−1 ̂̃η(X)− η(X)
∥∥
1

]
= EX

[∥∥T̂−1 ̂̃η(X)−T−1η̃(X)
∥∥
1

]
= EX

[∥∥T̂−1 ̂̃η(X)−T−1η̃(X) +T−1 ̂̃η(X)−T−1 ̂̃η(X)
∥∥
1

]
≤ EX

[∥∥T−1 ̂̃η(X)−T−1η̃(X)
∥∥
1
+

∥∥T̂−1 ̂̃η(X)−T−1 ̂̃η(X)
∥∥
1

]
≤

∥∥T−1
∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+
∥∥T̂−1 −T−1

∥∥
1
·EX

[∥∥̂̃η(X)
∥∥
1

]
≤

∥∥T−1
∥∥
1
·EX

[∥∥̂̃η(X)− η̃(X)
∥∥
1

]
+
∥∥T̂−1 −T−1

∥∥
1
.

Lemma 23 (Guarantee for noise-corrected OP2 with estimated T̂). For h : X → ∆n, let ĈS̃ [h] be the empirical
confusion matrix w.r.t. noisy sample S̃ (computed similarly as ĈS [h] in Eq. (1)). Let T̂ be an estimate of T.
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Then ∥∥CD[h]− T̂−1ĈS̃ [h]
∥∥

vec,∞

≤ n
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
vec,∞ +

∥∥T̂−1 −T−1
∥∥
1
.

Proof of Lemma 23.

Proof. ∥∥CD[h]− T̂−1ĈS̃ [h]
∥∥

vec,∞

=
∥∥T−1CD̃[h]− T̂−1ĈS̃ [h]

∥∥
vec,∞

=
∥∥T−1CD̃[h]− T̂−1ĈS̃ [h] +T−1ĈS̃ [h]−T−1ĈS̃ [h]

∥∥
vec,∞

≤
∥∥T−1CD̃[h]− T̂−1ĈS̃ [h] +T−1ĈS̃ [h]−T−1ĈS̃ [h]

∥∥
1

≤
∥∥T−1CD̃[h]−T−1ĈS̃ [h]

∥∥
1
+

∥∥T−1ĈS̃ [h]− T̂−1ĈS̃ [h]
∥∥
1

≤
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
1
+

∥∥(T−1 − T̂−1)ĈS̃ [h]
∥∥
1

≤ n
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
vec,∞ +

∥∥T−1 − T̂−1
∥∥
1
·
∥∥ĈS̃ [h]

∥∥
1

≤ n
∥∥T−1

∥∥
1
·
∥∥CD̃[h]− ĈS̃ [h]

∥∥
vec,∞ +

∥∥T−1 − T̂−1
∥∥
1
.

Proof of Theorem 16.

Proof. Similar as in the proof of Theorem 14, chaining Lemma 22 and Lemma 23 with Proposition 20 establishes
the claim.

Proof of Theorem 17.

Proof. Similar as in the proof of Theorem 15, chaining Lemma 22 and Lemma 23 with Proposition 21 establishes
the claim.

B Synthetic Data: Additional Details

Data generating process. Specifically, we constructed a 3-class problem over a 2-dimensional instance space
X = R2 as follows. Instances x were generated according to a fixed Gaussian mixture distribution. The class
probability function η : X→∆3 was ηy(x) =

exp(w⊤
y x+by)∑3

y′=1
exp(w⊤

y′x+by′ )
for some fixed weight vectors w1,w2,w3 ∈ R2

and bias terms b1, b2, b3 ∈ R. Given an instance x, a clean label y was drawn randomly according to η(x). Then
y was flipped to a noisy label ỹ according to the probabilities in the y-th column of T, where T is a prescribed
column stochastic noise matrix.

C Real Data: Additional Details and Experiments

For NCFW, NCBS, FW, and BS, the linear model CPE learner was implemented using scikit-learn (Pedregosa
et al., 2011). The different variants of NCLR, implemented in TensorFlow (Abadi et al., 2015), also used a linear
function class. In all cases, regularization parameters were chosen by cross-validation.

Table 4 gives details of the real data sets used in Section 6. Table 5 and Table 6 give results for G-mean loss and
Q-mean loss, respectively.
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Table 4: Details of Data Sets Used in Section 6
Data set # instances # classes # features
vehicle 846 4 18
pageblocks 5,473 5 10
satimage 6,435 6 36
covtype 581,012 7 14
abalone 4,177 12 8

Table 5: Comparison with Other Algorithms for G-mean Loss
Data sets Algorithms σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
vehicle FW 0.230 (0.007) 0.249 (0.011) 0.287 (0.009) 0.349 (0.011)

NCFW 0.231 (0.008) 0.247 (0.012) 0.289 (0.009) 0.312 (0.012)
NCLR-Backward 0.432 (0.017) 0.519 (0.013) 0.488 (0.034) 0.469 (0.025)
NCLR-Forward 0.463 (0.030) 0.496 (0.015) 0.523 (0.012) 0.524 (0.025)
NCLR-Plug-in 0.477 (0.016) 0.503 (0.012) 0.486 (0.021) 0.502 (0.013)

pageblocks FW 0.331 (0.026) 0.225 (0.009) 0.552 (0.081) 0.563 (0.046)
NCFW 0.236 (0.040) 0.167 (0.010) 0.503 (0.125) 0.382 (0.018)
NCLR-Backward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Forward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Plug-in 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.898 (0.091)

satimage FW 0.181 (0.004) 0.214 (0.004) 0.225 (0.005) 0.310 (0.005)
NCFW 0.180 (0.005) 0.213 (0.004) 0.212 (0.005) 0.272 (0.005)
NCLR-Backward 0.368 (0.010) 0.400 (0.013) 0.428 (0.020) 0.684 (0.072)
NCLR-Forward 0.362 (0.009) 0.351 (0.005) 0.385 (0.011) 0.524 (0.014)
NCLR-Plug-in 0.439 (0.023) 0.486 (0.012) 0.550 (0.023) 0.638 (0.019)

covtype FW 0.570 (0.001) 0.577 (0.001) 0.685 (0.004) 0.690 (0.005)
NCFW 0.515 (0.001) 0.516 (0.001) 0.546 (0.001) 0.612 (0.004)
NCLR-Backward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Forward 0.908 (0.021) 0.875 (0.003) 0.869 (0.002) 0.847 (0.004)
NCLR-Plug-in 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

abalone FW 0.779 (0.008) 0.775 (0.002) 0.786 (0.005) 0.778 (0.005)
NCFW 0.776 (0.007) 0.766 (0.001) 0.781 (0.007) 0.784 (0.005)
NCLR-Backward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Forward 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
NCLR-Plug-in 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

D Computing Resource

We ran all experiments on a desktop with one AMD Threadripper 3960X CPU and one Nvidia GeForce RTX
3090 GPU.
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Table 6: Comparison with Other Algorithms for Q-mean Loss
Data sets Algorithms σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
vehicle FW 0.268 (0.008) 0.287 (0.012) 0.313 (0.009) 0.367 (0.006)

NCFW 0.276 (0.005) 0.293 (0.009) 0.310 (0.010) 0.334 (0.011)
NCLR-Backward 0.449 (0.011) 0.518 (0.010) 0.495 (0.031) 0.480 (0.022)
NCLR-Forward 0.473 (0.023) 0.501 (0.011) 0.527 (0.011) 0.527 (0.023)
NCLR-Plug-in 0.486 (0.016) 0.504 (0.011) 0.489 (0.021) 0.507 (0.013)

pageblocks FW 0.352 (0.023) 0.276 (0.005) 0.499 (0.021) 0.547 (0.030)
NCFW 0.267 (0.016) 0.201 (0.004) 0.426 (0.032) 0.466 (0.036)
NCLR-Backward 0.684 (0.022) 0.683 (0.036) 0.776 (0.033) 0.715 (0.031)
NCLR-Forward 0.850 (0.024) 0.800 (0.039) 0.812 (0.042) 0.861 (0.019)
NCLR-Plug-in 0.695 (0.039) 0.641 (0.045) 0.681 (0.026) 0.677 (0.055)

satimage FW 0.197 (0.005) 0.228 (0.006) 0.246 (0.006) 0.323 (0.006)
NCFW 0.199 (0.006) 0.232 (0.005) 0.252 (0.007) 0.312 (0.005)
NCLR-Backward 0.390 (0.004) 0.403 (0.007) 0.412 (0.005) 0.443 (0.002)
NCLR-Forward 0.386 (0.005) 0.380 (0.003) 0.393 (0.004) 0.425 (0.001)
NCLR-Plug-in 0.425 (0.004) 0.435 (0.003) 0.465 (0.003) 0.528 (0.006)

covtype FW 0.567 (0.001) 0.570 (0.001) 0.639 (0.001) 0.653 (0.001)
NCFW 0.546 (0.001) 0.544 (0.001) 0.624 (0.000) 0.623 (0.001)
NCLR-Backward 0.736 (0.001) 0.744 (0.001) 0.752 (0.001) 0.768 (0.001)
NCLR-Forward 0.729 (0.001) 0.734 (0.001) 0.732 (0.001) 0.732 (0.001)
NCLR-Plug-in 0.799 (0.000) 0.802 (0.000) 0.813 (0.000) 0.813 (0.000)

abalone FW 0.754 (0.005) 0.762 (0.003) 0.763 (0.005) 0.767 (0.003)
NCFW 0.753 (0.005) 0.760 (0.003) 0.770 (0.006) 0.775 (0.004)
NCLR-Backward 0.910 (0.004) 0.919 (0.004) 0.917 (0.006) 0.910 (0.010)
NCLR-Forward 0.892 (0.008) 0.921 (0.004) 0.902 (0.004) 0.910 (0.006)
NCLR-Plug-in 0.907 (0.006) 0.915 (0.007) 0.911 (0.005) 0.908 (0.006)
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