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Abstract

In many applications of machine learning, the training data comes with noisy
labels; this issue is even more pronounced in multi-label problems, where multiple
labels/tags can be active in an instance simultaneously. In recent years, many
consistent noise-corrected algorithms have been designed for binary and multiclass
learning under class-conditional noise (CCN) and other noise models; however,
relatively few consistent algorithms exist for multi-label learning, and those that do
are under the very simple independent flipping noise (IFN) model. In this paper,
we develop three consistent noise-corrected multi-label learning algorithms: Noise-
Corrected Plug-in (NCPLUG) algorithm for Hamming loss under IFN; Noise-
Corrected Exact F-measure Plug-in (NCEFP) algorithm for multi-label F1-measure
under general CCN; and Noise-Corrected Output Coding (NCOC) algorithm for
general low-rank multi-label losses under general CCN. We provide quantitative
regret transfer bounds for all three algorithms to establish their consistency. We
also propose a new family of structured multi-label noise models that we term
Similar-Tag Switching Noise (STSN) models; STSN models are a special case of
CCN that require fewer parameters and enable fast computation, and moreover,
unlike IFN, they also capture some correlations among tags. Our experiments
confirm the effectiveness of our algorithms in correcting for multi-label noise.

1 Introduction
In many applications of machine learning, accurate labels are difficult or expensive to obtain; therefore,
in practice, one often receives noisy labels. This problem is even more pronounced in multi-label
classification (MLC) settings, where multiple labels/tags can be active in an instance simultaneously.
In recent years, there has been much interest in developing learning algorithms that can learn good
classifiers from data with noisy labels [10, 13, 32]. While there has been much work in this area for
binary and multiclass problems, there has been relatively limited work on multi-label learning from
noisy labels. In this paper, we develop principled noise-corrected multi-label learning algorithms for
a variety of performance measures under the general class-conditional noise (CCN) model.

The key challenge in learning from noisy labels is to develop algorithms that can produce accurate
classifiers for the true/clean distribution despite noisy labels; in particular, a desirable goal is that
the algorithms should be (Bayes) consistent, meaning that as the size of the (noisy) training sample
increases, the performance of the learned classifier converges to the Bayes optimal performance
under the clean (non-noisy) distribution. For binary and multiclass learning, many such consistent
algorithms have been designed under CCN and related noise models [23, 30, 29, 22, 19, 26, 12, 35, 27,
24, 38, 41, 20, 48, 18, 47]. However, for multi-label learning, only a few consistent noise-corrected
algorithms have been designed, and the consistency guarantees that do currently exist are for specific
performance measures under the relatively simple independent flipping noise (IFN) model (a special
case of CCN) that fails to capture correlations among tags [16, 44]. In this paper, we develop provably
Bayes consistent noise-corrected multi-label algorithms for a broad family of multi-label performance
measures under the general CCN model.
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Noise model Multi-label losses Noise-corrected algorithms
Symmetric IFN Hamming [16]
IFN Hamming, Ranking CCMN [44]
IFN Hamming NCPLUG (this work)
CCN F1-measure NCEFP (this work)
CCN General low-rank L NCOC (this work)

Figure 1: Summary of consistent noise-corrected multi-label algorithms and associated noise models.

Our contributions include the following (see also Figure 1):

1. Algorithms. We provide the following three consistent noise-corrected multi-label algorithms, all
of which work by identifying a small set of what we call ‘Bayes-sufficient’ statistics for the target
loss and estimating these reliably from the given noisy training sample:

• Noise-Corrected Plug-in (NCPLUG) algorithm for Hamming loss under IFN;
• Noise-Corrected Exact F-measure Plug-in (NCEFP) algorithm for multi-label F1-measure

under general CCN;
• Noise-Corrected Output Coding (NCOC) algorithm for general low-rank multi-label losses

under general CCN.
2. Regret transfer bounds and consistency. For all these algorithms, we provide quantitative
regret transfer bounds to establish consistency. The bounds suggest that as the amount of label noise
increases, the (noisy) sample size needed to reach a given level of performance generally increases.
3. Similar-Tag Switching Noise (STSN) model. While our NCEFP and NCOC algorithms are
provably consistent under general CCN models, in multi-label settings, general CCN models involve
extremely large noise matrices that make computation prohibitive. We propose a new family of
structured multi-label noise models that we term Similar-Tag Switching Noise (STSN) models. STSN
models are a special case of CCN that require fewer parameters and enable fast computation for
NCEFP and NCOC; moreover, unlike IFN models, they also capture some correlations among tags.
4. Experimental validation. Finally, we evaluate our algorithms on both synthetic and real data.

Related work. Below we briefly review some works that are most closely related to our study.

• Consistent algorithms for standard (non-noisy) multi-label learning. Bayes optimal multi-label
classifiers and consistent algorithms for MLC performance measures, including Hamming loss and
F1-measure, have been studied by [4, 6, 11, 5, 21, 49, 40, 39] and others. These works do not deal
with noisy labels. A detailed survey on multi-label learning can be found in [46].

• Consistent algorithms for binary/multiclass learning from noisy labels for CCN models. Many
consistent noise-corrected algorithms have been designed for binary/multiclass learning [23, 30, 29,
22, 19, 26, 12, 35, 27, 24, 38, 41, 20, 48, 18, 47]. But when applied to multi-label problems in a
straightforward way (by treating each label vector as a class), these algorithms need exponential (in
the number of tags) number of parameters and suffer from slow computation. In essence, they are not
designed for multi-label problems.

• Multi-label learning from noisy labels. Two types of noise models have been studied: statistical
and non-statistical. For statistical noise models, [16] studied a special ‘symmetric’ case of IFN
and focused on loss functions satisfying certain conditions (e.g., Hamming loss). [44] showed
consistent algorithms for Hamming and Ranking losses under IFN. [17] proposed a way to estimate
noise matrices under IFN. For non-statistical noise models, partial multi-label learning (PML) is a
prominent example, where for each instance, its noisy label contains all active tags from the clean
label, as well as some non-active tags. Some algorithms have been proposed to deal with PML
[42, 9, 37, 33, 43]; however it is unclear whether a Bayes optimal classifier can be recovered under
PML. Other empirical studies of multi-label learning from noisy labels include [36, 14, 3, 50].

Organization. After preliminaries and background in Section 2, we provide intuition for our
algorithms in Section 3, followed by our three noise-corrected algorithms in Section 4. Section 5
gives regret transfer bounds for our algorithms. Section 6 describes the STSN model. Section 7
summarizes our experiments. Finally, Section 8 concludes the paper. All proofs are in the Appendix.

Notation. For an integer n, we denote by [n] the set of integers {1, . . . , n}, and by ∆n the probability
simplex {p ∈ Rn+ :

∑n
y=1 py = 1}. For a vector a, we denote by ∥a∥p the p-norm of a, and by aj

the j-indexed entry of a. For a matrix A, we denote by ∥A∥p the induced p-norm of A, by ay the
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y-indexed column vector of A, and by aj,y the (j, y)-indexed element of A. We use 1(·) to denote
the indicator function and

p−→ to denote convergence in probability.

2 Preliminaries and background
Multi-label classification (MLC) with noisy labels. In an MLC problem, there is an instance space
X , and a set of s tags T = [s] := {1, . . . , s} that can be associated with each instance in X . For
example, in image tagging, X is the set of possible images, and T is a set of s pre-defined tags (such
as sky, cloud, water etc.) that can be associated with each image. The label space Y ⊆ {0, 1}s
consists of label vectors y ∈ {0, 1}s that indicate which of the s tags are active (specifically, yj = 1
denotes that tag j is active, and yj = 0 denotes it is inactive). Let |Y| denote the size of Y .

There is a (unknown) joint probability distribution D on X × Y from which labeled examples
(X,Y) are drawn. In the standard (non-noisy) MLC problem, the learner would be given training
examples drawn directly from D. However, when learning from noisy labels, the learner instead
sees only noisy examples (X, Ỹ), where Ỹ is a noisy version of Y. Given a noisy training sample
S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m, the goal is to learn a multi-label classifier h : X→Y
that performs well with respect to the clean distribution D.
Class-conditional noise (CCN). The label noise models we consider here belong to the well-
known CCN model that has been widely studied in binary and multiclass learning from noisy labels
[23, 35, 27], in which a label y is randomly flipped to a label ỹ with some probability cy,ỹ that
depends on y and ỹ, but not on the features. Specifically, the CCN model is characterized by
a row-stochastic noise matrix C ∈ [0, 1]|Y|×|Y| with entries cy,ỹ, such that for each y, ỹ ∈ Y ,
cy,ỹ = P(Ỹ = ỹ |Y = y). The noisy training examples can therefore be viewed as being drawn
i.i.d. from a ‘noisy’ distribution D̃ on X × Y : an example (X,Y) is first drawn randomly according
to D, and then noise is injected according to the noise matrix C to produce (X, Ỹ). In MLC, |Y| can
be as large as 2s; therefore, a fully general noise matrix C requires too many parameters (exponential
in s). This necessitates considering more structured noise models well-suited to MLC problems.
Independent flipping noise (IFN). So far, most previous work has considered only the very simple
multi-label IFN model (a special case of CCN) where each tag is flipped independently from active
to inactive or vice versa; this involves only 2s parameters defined as c(j)0,1 = P(Ỹj = 1|Yj = 0) and

c
(j)
1,0 = P(Ỹj = 0|Yj = 1), ∀j ∈ [s].

Multi-label performance measures/loss matrices L. We will consider multi-label loss matrices of
the form L ∈ R|Y|×|Y|

+ , with entries ℓy,ŷ indicating the loss incurred on predicting ŷ when the clean
label is y. Two specific examples we will use throughout the paper are the following:

• (Normalized) Hamming loss LHam: ℓHam
y,ŷ =

1

s

s∑
j=1

1(ŷj ̸= yj) , (1)

• F1-measure LF1 (specified as a loss [5, 49]): ℓF1
y,ŷ = 1−

2
∑s

j=1 yj ŷj

∥y∥1 + ∥ŷ∥1
, where we take

0

0
= 1 . (2)

L-generalization error, L-regret, and Bayes consistency. Given a multi-label loss matrix L, the L-
generalization error of a multi-label classifier h : X→Y under the clean distribution D is defined as
erLD[h] = E(X,Y)∼D[ℓY,h(X)], its L-regret is defined as regretLD[h] = erLD[h]− infh′:X→Y erLD[h

′].
We will say a noise-corrected algorithm that maps a noisy training sample S̃ to a classifier ĥ is Bayes
consistent for L under D if regretLD[ĥ]

p−→ 0 as the noisy sample size m→ ∞.
Multi-label class probability functions. We will denote by η, η̃ : X→∆|Y| the multi-label class
probability functions associated with the clean distribution D and the noisy distribution D̃, respec-
tively, defined as ηy(x) = P(Y = y|X = x) and η̃y(x) = P(Ỹ = y|X = x).
Binary and multiclass class probability estimation (CPE), and logistic losses. Our multi-label
algorithms will involve solving various binary and multiclass CPE sub-problems, which in turn
involve estimating the class probability functions associated with the corresponding binary/multiclass
problems. For binary CPE problems, we will use the binary logistic loss ϕlog : {0, 1} × R→R+

and associated inverse link function γ−1
log : R→[0, 1] defined by ϕlog(y, u) = ln(1 + e−(2y−1)u) and

γ−1
log(u) =

1
1+exp(−u) , respectively; similarly for n-class CPE problems, we will use the multiclass

logistic loss ϕmlog : [n] × Rn−1 → R+ and associated inverse link function γ−1
mlog : Rn−1 → ∆n
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defined by ϕmlog(y,u) = − ln
( exp(uy)

1+
∑n−1

i=1 exp(ui)

)
if y ∈ [n−1] and ln

(
1+
∑n−1
i=1 exp(ui)

)
if y = n,

and (γ−1
mlog(u))y =

exp(uy)

1+
∑n−1

i=1 exp(ui)
if y ∈ [n− 1] and 1

1+
∑n−1

i=1 exp(ui)
if y = n, respectively.

3 Key ideas and intuition
Bayes optimal classifier for L and ‘Bayes-sufficient’ statistics q(x). Given a multi-label loss
matrix L, the Bayes optimal classifier for L under the clean distribution D (i.e., the classifier with
smallest L-generalization error under D) is given by

h∗(x) ∈ argmin
ŷ∈Y

η(x)⊤ℓŷ .

Our goal will be to construct an approximation to h∗ from S̃. There are two main challenges: (1) for
multi-label problems, η(x) ∈ ∆|Y| is potentially a very large vector; (2) we have access to only the
noisy training sample S̃. In order to overcome these challenges, the key ideas in all our algorithms
will be to (1) identify a small set of statistics q(x) of the class probability vector η(x) – which we
will refer to as ‘Bayes-sufficient’ statistics for L – that suffice to construct the Bayes optimal classifier
for L; and (2) estimate the statistics q(x) reliably from the given noisy training sample S̃.

4 Algorithms
4.1 Hamming loss under IFN: NCPLUG algorithm

Let us start with the simplest case: Hamming loss under the independent flipping noise (IFN) model.
This is also the main setting for which consistent noise-corrected algorithms have previously been
developed [16, 44]. Under this setting, the loss and noise model both involve independent components
for the s tags, and the problem reduces to solving s independent binary noisy label problems, one for
each tag; indeed, the CCMN algorithm of [44] essentially solves each of these binary problems using
the binary unbiased estimator method of [23]. Our Noise-Corrected Plug-in (NCPLUG) algorithm
will also solve s independent binary problems, but will do so in a way that illustrates in this simple
setting the essence of the approach that we will build on for more complex settings later.

Under the Hamming loss, the Bayes optimal classifier requires only the s Bayes-sufficient statistics
qj(x) = P(Yj = 1|x) ∀j ∈ [s] .

Indeed, the Bayes optimal classifier for LHam can be written as
h∗j (x) = 1(qj(x) ≥ 1

2 ) ∀j ∈ [s] .

The key idea then is to estimate the statistics qj(x), associated with the clean distribution D, reliably
from the noisy training sample S̃. For this, we use a very simple approach. In particular, we first
apply a standard binary CPE learner to S̃ to obtain estimates of the statistics q′j(x) = P(Ỹj = 1|x)
associated with the noisy distribution D̃. Next, under the IFN model, assuming c(j)0,1 + c

(j)
1,0 < 1, we

have qj(x) and q′j(x) are related by q′j(x) = (1− c
(j)
1,0) · qj(x) + c

(j)
0,1 · (1− qj(x)), or equivalently

qj(x) =
q′j(x)−c

(j)
0,1

1−c(j)0,1−c
(j)
1,0

,∀j ∈ [s]. Therefore, given q̂′j(x) estimated from S̃, the multi-label classifier

output by our NCPLUG algorithm is given by

ĥj(x) = 1
( q̂′j(x)− c

(j)
0,1

1− c
(j)
0,1 − c

(j)
1,0

≥ 1
2

)
∀j ∈ [s] .

Estimating q′(x). Our implementation of NCPLUG uses a binary logistic loss minimizer for the
CPE learner. In particular, we first learn a vector of s real-valued functions f̂ : X→Rs by minimizing
the s-dimensional convex surrogate loss ψ : Y × Rs→R+ defined as ψ(y,u) =

∑s
j=1 ϕlog(yj , uj)

over the noisy training sample S̃. Specifically, f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)) for a suitable

class of real-valued vector functions F ⊆ {f : X→Rs}. The estimated statistics are then given by
q̂′j(x) = γ−1

log(f̂j(x)). Detailed pseudocode is in Appendix A.

4.2 F1-measure under general CCN: NCEFP algorithm

Next, we consider multi-label learning with F1-measure under general class-conditional noise (CCN).
In this section, we will build on the Exact F -measure Plug-in (EFP) algorithm of [5], which is
consistent for multi-label F1-measure in the non-noisy setting. We will develop a noise-corrected
version of this algorithm that we will call the Noise-Corrected Exact F-measure Plug-in (NCEFP)
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algorithm. Again, our approach will be to reliably estimate suitable Bayes-sufficient statistics q(x)
associated with the clean distribution D from the noisy training sample.

As shown in [5], for the multi-label F1-measure, the following s2 + 1 statistics are Bayes-sufficient:
q0(x) = P(∥Y∥1 = 0|x) ; qjk(x) = P(Yj = 1, ∥Y∥1 = k|x) ∀j, k ∈ [s] .

In particular, under the F1-measure, the Bayes optimal classifier is given by

h∗(x) ∈ argmin
ŷ∈Y

{
1− q0(x) · 1(∥ŷ∥1 = 0)−

s∑
j=1

s∑
k=1

qjk(x) ·
2 · ŷj

k + ∥ŷ∥1

}
.

For the standard (non-noisy) setting, Dembczynski et al. [5] showed how to estimate the s2 statistics
{qjk(x) : j, k ∈ [s]} by solving s multiclass ((s + 1)-class) CPE problems, and statistic q0(x) by
solving a binary CPE problem. Here we develop noise-corrected versions of these procedures for
estimating these statistics from the noisy training sample.

Let us first define a matrix A ∈ [0, 1](s
2+1)×|Y| as follows:

a0,y = 1(∥y∥1 = 0) ; ajk,y = 1(∥y∥1 = k) · yj ∀j, k ∈ [s] .
Then it can be seen that the Bayes-sufficient statistics above can be written as q(x) = Aη(x).
Under the general CCN model, the clean class probability function η(x) is related to the noisy class
probability function η̃(x) via η̃(x) = C⊤η(x). Therefore, if C is invertible, then the desired statistics
q(x) can be written in terms of η̃(x) as q(x) = A(C⊤)−1η̃(x) = Ãη̃(x), where Ã = A(C⊤)−1.
Now unlike the standard (non-noisy) setting, where the statistics q(x) expressed directly in terms of
η(x) naturally decomposed into a set of multiclass (and one binary) CPE problems, these statistics
expressed in terms of η̃(x) no longer naturally decompose this way. Nevertheless, we will show how
to estimate these statistics from the noisy training sample by solving s suitably weighted multiclass
CPE problems together with a suitably weighted binary CPE problem. To do so, we will use a
shifted and scaled matrix Ã′ to estimate related statistics q′(x) and then factor back in the scaling
and shifting when using the estimated statistics to make a final prediction.1 Towards this, define
ãmin = min(miny ã0,y,miny,jk ãjk,y) and ãmax = max(maxy ã0,y,maxy,jk ãjk,y), and let the
entries of Ã′ ∈ [0, 1](s

2+1)×|Y| be defined as

ã′0,y =
ã0,y − ãmin

ãmax − ãmin
∈ [0, 1] ; ã′jk,y =

ãjk,y − ãmin

s · (ãmax − ãmin)
∈ [0, 1] ∀j, k ∈ [s] .

It can be verified that
∑s
k=1 ã

′
jk,y ≤ 1 for all j ∈ [s],y ∈ Y . Next, define q′(x) = Ã′η̃(x).

Then, for each j ∈ [s], we set up a weighted multiclass ((s+ 1)-class) CPE problem with weights
(ã′j1,y, ..., ã

′
js,y, (1−

∑s
k=1 ã

′
jk,y)) to estimate the statistics q′j1(x), ..., q

′
js(x), and a weighted binary

CPE problem with weights (ã′0,y, (1 − ã′0,y)) to estimate q′0(x). Finally, given q̂′(x) estimated in
this way from the noisy training sample, our NCEFP algorithm outputs the multi-label classifier2

ĥ(x) = argmin
ŷ∈Y

{
1− [(ãmax − ãmin) · q̂′0(x) + ãmin] · 1(∥ŷ∥1 = 0)

−
s∑
j=1

s∑
k=1

[s · (ãmax − ãmin) · q̂′jk(x) + ãmin] ·
2 · ŷj

k + ∥ŷ∥1

}
.

Estimating q′(x). Our implementation of NCEFP uses weighted multiclass and binary logistic
loss minimizers for the weighted CPE learners. In particular, we first learn a vector of s2 + 1

real-valued functions f̂ : X→Rs2+1 by minimizing the (s2 + 1)-dimensional convex surrogate
loss ψ : Y × Rs2+1→R+ defined as ψ(y,u) = ã′0,y · ϕlog(1, u0) + (1 − ã′0,y) · ϕlog(0, u0) +∑s
j=1

[∑s
k=1 ã

′
jk,yϕmlog(k, (uj1, ..., ujs))+(1−

∑s
k=1 ã

′
jk,y)ϕmlog(s+1, (uj1, ..., ujs))

]
over the

noisy sample S̃. Specifically, f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)) for a suitable class of real-

valued vector functions F ⊆ {f : X→Rs2+1}. The estimated statistics are then given by q̂′0(x) =
γ−1
log(f̂0(x)) and q̂′jk(x) =

(
γ−1

mlog(f̂j1(x), ..., f̂js(x))
)
k
. Detailed pseudocode is in Appendix A.

1Entries of Ã cannot be used directly as they may be negative and/or not add up to one.
2The combinatorial optimization problem involved in producing ĥ(x) has a similar functional form as its

non-noisy counterpart, and for Y = {0, 1}s, it can be solved in order O(s3) time using a procedure of [6] (if
the label vectors are sparse with at most K nonzero entries each, then the optimization can be solved in order
O(sK2) time; a special case of this scenario is discussed in Section 6 and Appendix C).
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4.3 General low-rank multi-label losses under general CCN: NCOC algorithm

We now consider multi-label learning with a general low-rank loss matrix (encompassing the Ham-
ming loss and F1-measure as special cases) under general class-conditional noise (CCN). In this
section, we will build on the Output Coding (OC) algorithm of [49] which was developed for the
multi-label F1-measure in the standard (non-noisy) setting and was shown to be consistent for that
setting. The approach applies more broadly to low-rank loss matrices in general, and we will develop
a noise-corrected version of this algorithm for the general setting that we will call the Noise-Corrected
Output Coding (NCOC) algorithm. Again, our approach will be to reliably estimate suitable Bayes-
sufficient statistics q(x) associated with the clean distribution D from the noisy training sample. In
the special cases of Hamming loss and F1-measure, these statistics are the same as those discussed in
Section 4.1 and Section 4.2, but the estimation procedures will be different.

Output coding is a general term that refers to the solution of multiclass or multi-label problems by
decomposing them into a set of binary prediction problems [7, 2, 28]. The OC algorithm of [49]
breaks down a multi-label prediction problem with a low-rank loss into a small number of weighted
binary CPE problems. In particular, consider a multi-label loss matrix L that can be written as
L = A⊤B+1t⊤ for some A ∈ [0, 1]r×|Y|,B ∈ Rr×|Y|, t ∈ R|Y| (so that rank(L) ≤ r+1). Then
it turns out that the r-dimensional vector statistic q(x) defined as

q(x) = Aη(x)
is Bayes-sufficient for L. Indeed, the Bayes optimal classifier for L can be written as

h∗(x) ∈ argmin
ŷ∈Y

ℓ⊤ŷ η(x) = argmin
ŷ∈Y

b⊤
ŷ (Aη(x)) + tŷ = argmin

ŷ∈Y
b⊤
ŷ q(x) + tŷ .

In the standard (non-noisy) setting, the OC algorithm of [49] estimates these statistics q(x) by
decomposing the multi-label problem into r weighted binary CPE problems. Again, we will develop
noise-corrected versions of these procedures to estimate the statistics from the noisy training sample.

As before, under the general CCN model, we have η̃(x) = C⊤η(x). Therefore, if C is invertible,
then q(x) can be written in terms of η̃(x) as q(x) = Ãη̃(x), where Ã = A(C⊤)−1. Again, in order
to set up suitably weighted binary CPE problems that can allow us to estimate these statistics from
the noisy training sample, we will use a shifted and scaled matrix Ã′ to estimate related statistics
q′(x), and then factor back in the scaling and shifting when making a final prediction. Towards this,
define ãmin = miny,j ãj,y and ãmax = maxy,j ãj,y, and define the entries of Ã′ ∈ [0, 1]r×|Y| as

ã′j,y =
ãj,y − ãmin

ãmax − ãmin
∈ [0, 1] ∀j ∈ [r] .

We note that scaling for the terms ã′j,y is different from that used for the NCEFP algorithm in Section
4.2, as now we are decomposing the problem into r binary problems rather than multiclass. Next,
define q′(x) = Ã′η̃(x). Then, for each j ∈ [r], we set up a weighted binary CPE problem with
weights (ã′j,y, (1− ã′j,y)) to estimate q′j(x). Finally, given estimated statistics q̂′(x) estimated in this
way from the noisy training sample, our NCOC algorithm outputs the multi-label classifier

ĥ(x) = argmin
ŷ∈Y

{
tŷ +

r∑
j=1

[(ãmax − ãmin) · q̂′j(x) + ãmin] · bj,ŷ
}
.

Estimating q′(x). Our implementation of NCOC uses weighted binary logistic loss minimiz-
ers for the weighted CPE learners. In particular, we first learn a vector of r real-valued func-
tions f̂ : X→Rr by minimizing the r-dimensional convex surrogate loss ψ : Y × Rr→R+

defined as ψ(y,u) =
∑r
j=1

(
ã′j,yϕlog(1, uj) + (1 − ã′j,y)ϕlog(0, uj)

)
over S̃. Specifically,

f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)) for a suitable class of functions F ⊆ {f : X→Rr}. The

estimated statistics are then given by q̂′j(x) = γ−1
log(f̂j(x)). Detailed pseudocode is in Appendix A.

The above approach can be applied to any low-rank loss matrix that can be written in the form
described above, including both Hamming loss and F1-measure as discussed below.

Example 1 (Low-rank decomposition for LHam). The Hamming loss in Eq. (1) can be written as

ℓHam
y,ŷ =

1

s

s∑
j=1

1(ŷj ̸= yj) =

s∑
j=1

1− 2ŷj
s

yj +

s∑
j=1

ŷj
s
. (3)
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In other words, we have LHam = A⊤B+ 1t⊤ where A ∈ [0, 1]s×|Y| with aj,y = yj , B ∈ Rs×|Y|

with bj,ŷ =
1−2ŷj
s , and t ∈ R|Y| with tŷ =

∑s
j=1

ŷj
s = 1

s∥ŷ∥1. Thus, for Hamming loss, r = s and
the statistics q(x) = Aη(x) ∈ [0, 1]s turn out to be the same as in Section 4.1.
Example 2 (Low-rank decomposition for LF1 ). The F1-measure loss in Eq. (2) can be written as

ℓF1

y,ŷ = 1− 1(∥y∥1 = 0) · 1(∥ŷ∥1 = 0)−
s∑
j=1

s∑
k=1

1(∥y∥1 = k) · yj ·
2 · ŷj

k + ∥ŷ∥1
. (4)

In other words, we have LF1 = A⊤B+ 1t⊤ where A ∈ [0, 1](s
2+1)×|Y| with a0,y = 1(∥y∥1 = 0)

and ajk,y = 1(∥y∥1 = k) · yj , B ∈ R(s2+1)×|Y| with b0,ŷ = −1(∥ŷ∥1 = 0) and bjk,ŷ = − 2·ŷj
k+∥ŷ∥1

,

and t ∈ R|Y| with tŷ = 1. Thus, for F1-measure, r = s2 + 1 and the statistics q(x) = Aη(x) ∈
[0, 1]s

2+1 turn out to be the same as in Section 4.2.

Remark on computation for NCEFP and NCOC, and fast NCOC-Ham-IFN algorithm. We note
that the NCEFP and NCOC algorithms above both require storing the noise matrix C and computing
(C⊤)−1. For a general multi-label noise matrix C, this can be prohibitively expensive. Therefore,
these algorithms are practical when either the number of tags s is small or the noise matrix C is
suitably structured. We describe one such structure, namely the STSN model, in Section 6, that
enables fast computation. We also note that under the previously well-studied IFN model, noise
matrices C – even though relatively simple with few parameters – are (to our knowledge) expensive
to invert. For the special case of Hamming loss under IFN, in Appendix A.4, we present an alternative
faster noise-corrected output coding algorithm – that we call NCOC-Ham-IFN – that decomposes the
problem of estimating statistics q(x) into a different set of s binary CPE problems obtained using a
different coding matrix Ã′′ that does not require inverting C⊤.

5 Regret transfer bounds and consistency
Below we provide quantitative regret transfer bounds for each of the three algorithms above that
upper bound the target L-regret of the learned classifier ĥ under the clean distribution D in terms of
the surrogate ψ-regret (defined below) of the associated real-valued vector function f̂ obtained by
minimizing the corresponding convex surrogate loss ψ (defined for each algorithm in the correspond-
ing section above) under the noisy distribution D̃. In each case, if the surrogate loss ψ is minimized
over a suitably rich function class, then ψ-regret under D̃ converges in probability to 0 as m→ ∞.
Therefore, this also implies Bayes consistency of these algorithms for the target loss L under D.

ψ-generalization error and ψ-regret. For any positive integer r, an r-dimensional surrogate loss
ψ : Y × Rr→R+ and vector-valued function f : X→Rr, define the ψ-generalization error of f
under the noisy distribution D̃ as erψ

D̃
[f ] = E(X,Ỹ)∼D̃[ψ(Ỹ, f(X))], and its ψ-regret of under D̃ as

regretψ
D̃
[f ] = erψ

D̃
[f ]− inff ′:X→Rr erψ

D̃
[f ′].

Theorem 1 (Regret bound for NCPLUG). Consider Hamming loss LHam (Eq. (1)) under IFN
model. Assume c(j)0,1+c

(j)
1,0 < 1 for all j ∈ [s]. LetD be any distribution on X ×Y with corresponding

noisy distribution D̃. Suppose NCPLUG (Section 4.1) is run with noisy training sample S̃ (in which
examples are sampled i.i.d. from D̃), and let ψ, f̂ , ĥ be as defined in Section 4.1. Then we have

regretL
Ham

D [ĥ] ≤ 1√
s
max
i

1

1− c
(i)
0,1 − c

(i)
1,0

√
2regretψ

D̃
[̂f ] .

Theorem 2 (Regret bound for NCEFP). Consider F -measure LF1 (Eq. (2)) under the general
CCN model. Assume noise matrix C is invertible. Let D be any distribution on X × Y with
corresponding noisy distribution D̃. Suppose NCEFP (Section 4.2) is run with noisy training sample
S̃ (in which examples are sampled i.i.d. from D̃). Let ψ, f̂ , ĥ be as defined in Section 4.2, and let
A ∈ [0, 1](s

2+1)×|Y|, B ∈ R(s2+1)×|Y|, and t ∈ R|Y| be as defined in Example 2. Then we have

regretL
F1

D [ĥ] ≤ 4smax
ŷ

∥bŷ∥2 · ∥A∥1∥(C⊤)−1∥1
√
2regretψ

D̃
[̂f ] .

Theorem 3 (Regret bound for NCOC). Consider a general low-rank loss matrix L written as
L = A⊤B+ 1t⊤ for some A ∈ [0, 1]r×|Y|,B ∈ Rr×|Y|, t ∈ R|Y|, under the general CCN model.
Assume noise matrix C is invertible. Let D be any distribution on X × Y with corresponding noisy
distribution D̃. Suppose NCOC (Section 4.3) is run with noisy training sample S̃ (in which examples
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Figure 2: Sample complexity behavior of NCOC-F1 and NCEFP on synthetic multi-label data for 4 noise
parameters under the STSN model. Performance measure is F1-measure (specified as a gain).

are sampled i.i.d. from D̃), and let ψ, f̂ , ĥ be as defined in Section 4.3. Then we have

regretLD[ĥ] ≤ 2max
ŷ

∥bŷ∥2 · ∥A∥1∥(C⊤)−1∥1
√

2regretψ
D̃
[̂f ] .

The quantity ∥(C⊤)−1∥1 can be viewed as capturing the amount of label noise in C. The bounds
therefore suggest that as the amount of label noise increases (larger ∥(C⊤)−1∥1), the sample size
needed to reach a given level of performance generally increases.

In Appendix B, we provide proofs of more general versions of the above theorems that allow one to
use an estimated noise matrix Ĉ when the true noise matrix C may be unknown.

6 Similar-Tag Switching Noise (STSN) model
As noted earlier, general CCN models can require too many (up to order O(4s)) parameters and make
computation prohibitive. Here we propose a new family of structured multi-label noise models that
we term Similar-Tag Switching Noise (STSN) models; STSN models are a special case of CCN that
require fewer parameters and enable fast computation, and moreover, unlike IFN, they also capture
some correlations among tags. The idea behind STSN models is that tags are partitioned into several
groups, each of which contains similar/related tags, and independently within each group, an active
tag can be switched with another tag in the group (i.e., similar tags can be switched with each other).

Specifically, let the set of s tags T = [s] be partitioned into K (K ≤ s) groups of tags G1, ..., GK ,
such that the tags within any group are similar/related to each other (for example, G1 could contain
tags lion, tiger; G2 could contain tags river, lake; etc.). We will assume that within each
group, at most one tag is active in any label vector y; this gives |Y| =

∏K
k=1(1 + |Gk|) ≪ 2s, and

∥y∥1 ≤ K for all y ∈ Y (indeed, this is in line with many real multi-label datasets in which labels are
very sparse). The STSN model involves K noise parameters: σk ∈ [0, 1] for k ∈ [K]. Specifically,
for a label y ∈ Y ⊆ {0, 1}s, let yGk

∈ {0, 1}|Gk| denote the sub-label restricted to tags in Gk.
Recall that ∥yGk

∥ ≤ 1. For groups Gk with |Gk| ≥ 2, the noise process within Gk is as follows: if
yGk

= 0, then ỹGk
= 0; if yGk

̸= 0, then with probability σk, yGk
is changed to ỹGk

by switching
its (only) active tag with one of the remaining |Gk| − 1 non-active tags chosen uniformly at random,
and with probability 1− σk, ỹGk

is the same as yGk
. For groups Gk with |Gk| = 1, yGk

is flipped
to the opposite with probability σk. The above noise process is applied independently to each group.
(For the special case when there are K = s groups each of size one, the STSN model reduces to the
symmetric IFN model studied by [16], but in the general case, it can capture much richer structure.)
Appendix C summarizes various small changes/simplifications to our algorithms under STSN. We
also include a way to estimate STSN parameters under the anchor point assumption [19, 27, 45, 48].

7 Experiments
7.1 Synthetic data: sample complexity behavior

We tested the sample complexity behavior of our algorithms. Here we report results for the F1-
measure under the STSN model; results for Hamming loss under IFN are in Appendix D.
F1-measure under STSN. We generated a multi-label dataset with instances x in X = R100

and s = 10 tags partitioned into K = 5 groups G = {{1, 2, 3}, {4, 5, 6}, {7, 8}, {9}, {10}}, so
|Y| = 192 and ∥y∥1 ≤ K = 5 ∀y ∈ Y (details in Appendix D). We then added label noise using 4
single-parameter STSN noise matrices respecting this partition: specifically, we let σ1, ..., σ5 = σ,
and chose 4 values of σ: 0.2, 0.25, 0.3, 0.35. We ran NCOC-F1 and NCEFP (with a linear function
class) to learn multi-label classifiers from increasingly large noisy training samples generated in this
way, and measured the F1-measure on a test set of 10, 000 clean data points. The results are shown in
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Figure 3: Examples of the selected 17 tags in Mediamill dataset. Pictures were taken from [31].
Table 1: Hamming loss on (modified) Mediamill data with IFN model (lower values are better). Performance
values are in %, and are reported as Mean±SEM over five random trials. Noise level is 1

m

∑m
i=1 1(yi ̸= ỹi).

Noise Noise NCPLUG NCOC-Ham-IFN CCMN OC-Ham/BRparameter (c0,1, c1,0) level (%)
(0.1,0.2) 85.62 7.73±0.0 7.73±0.0 7.77±0.0 7.98±0.0
(0.15,0.4) 96.17 7.8±0.0 7.8±0.0 8.03±0.07 8.32±0.0
(0.25,0.45) 99.48 7.9±0.0 7.9±0.0 8.29±0.02 8.33±0.0

Table 2: Hamming loss on (modified) Mediamill data with STSN model (lower values are better). Performance
values are in %, and are reported as Mean±SEM over five random trials. Noise level is 1

m

∑m
i=1 1(yi ̸= ỹi).

Noise Noise NCOC-Ham OC-Ham/BRparameter (σ) level (%)
0.1 13.47 7.66±0.0 7.84±0.0
0.2 26.31 7.68±0.0 8.09±0.0
0.3 38.18 7.68±0.0 8.24±0.0
0.4 49.01 7.65±0.0 8.31±0.0
0.6 68.21 7.75±0.0 8.37±0.0

Figure 2. We see that, as suggested by our regret bounds, as noise parameter σ increases, the sample
size needed to reach a given level of performance generally increases.

7.2 Real data: comparison with other methods
Next, we evaluated our algorithms on two real multi-label datasets: Mediamill and Multi-MNIST
[31, 34]. Here we report results on the Mediamill data; results for Multi-MNIST are in Appendix D.
Mediamill dataset. The original Mediamill dataset has 30,993 training examples and 12,914
test examples with 101 tags, and the images have been processed into 120 features [31]. We se-
lected a subset of 17 tags that contains naturally groupable tags, and divided them into 7 groups:
{ {Duo-anchor, Anchor}, {People, People marching, People walking}, {Split screen,
Screen}, {Sky, Cloud}, {Religious leader, Monologue}, {Court, Meeting}, {Tower,
Government building, Urban, Building} }. (See also Figure 3 for visual impressions.) For
consistency with the STSN model assumption, we removed instances that have more than one active
tag in any group; we also removed instances that do not have any active tag among the 17 tags. Our
modified Mediamill dataset has 20,141 training examples and 7,737 test examples with 17 tags.

Hamming loss under IFN. For IFN, we let c(j)1,0 = c1,0 and c(j)0,1 = c0,1 for all j, and chose noise
parameters of the form (c0,1, c1,0). We compared our NCPLUG and NCOC-Ham-IFN algorithms
with CCMN [44] and basic OC-Ham/BR [46]. All algorithms were trained to learn linear models
with regularization (details in Appendix D). The results are shown in Table 1. As seen, our NCPLUG
and NCOC-Ham-IFN algorithms generally outperform other baselines.
Hamming loss and F1-measure under STSN. For STSN, we used single-parameter noise matrices
respecting the partition into K = 7 groups described above, with σ1, ..., σ7 = σ. We compared
our NCOC-Ham algorithm with basic OC-Ham/BR [46], as well as our NCOC-F1 and NCEFP
algorithms with basic OC-F1 [49] and EFP [5]. All algorithms were trained to learn linear models
with regularization (details in Appendix D). The results are shown in Table 2 and Table 3. Again, our
noise-corrected algorithms generally outperform other baselines.

8 Conclusion
We have developed three consistent noise-corrected multi-label learning algorithms (NCPLUG,
NCEFP, and NCOC), encompassing a variety of multi-label performance measures and general
class-conditional noise (CCN) models. We have provided quantitative regret transfer bounds for all
three algorithms to establish their consistency. We have also proposed a new family of structured
multi-label noise models that we term similar-tag switching noise (STSN) models; STSN models
are a special case of CCN that require fewer parameters and enable fast computation, and moreover,
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Table 3: F1-measure on (modified) Mediamill data with STSN model (higher values are better). Performance
values are in %, and are reported as Mean±SEM over five random trials. Noise level is 1

m

∑m
i=1 1(yi ̸= ỹi).

Noise Noise NCEFP NCOC-F1 EFP OC-F1parameter (σ) level (%)
0.1 13.47 42.29±0.03 42.86±0.02 41.84±0.03 41.76±0.04
0.2 26.31 42.22±0.02 42.95±0.02 41.42±0.01 41.44±0.03
0.3 38.18 41.36±0.03 43.03±0.03 41.01±0.02 40.96±0.03
0.4 49.01 39.04±0.09 43.1±0.05 40.81±0.03 40.71±0.03
0.6 68.21 31.81±0.03 42.83±0.06 6.57±0.03 6.57±0.03

unlike IFN, they also capture some correlations among tags. Our experiments have confirmed the
effectiveness of our algorithms in correcting for multi-label noise. Future work includes developing
ways to estimate STSN models from noisy data, and exploring the design of other structured noise
models that could be suitable for multi-label settings.
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Consistent Multi-Label Classification from Noisy Labels

Appendix

A Supplement to Section 4

A.1 Detailed pseudocode for NCPLUG algorithm

See Algorithm 1.

Algorithm 1 Noise-Corrected Plug-in (NCPLUG) for Hamming loss under IFN

1: Inputs:
(1) Noisy training sample, S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m

(2) Noise rates c(j)0,1, c
(j)
1,0 ∀j ∈ [s]

2: Parameters:
(1) Class F of functions f : X→Rs

3: Compute f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)), where ψ is defined as

ψ(y,u) =

s∑
j=1

ϕlog(yj , uj)

4: Output:
Multi-label classifier

ĥj(x) = 1(
γ−1
log(f̂j(x))− c

(j)
0,1

1− c
(j)
0,1 − c

(j)
1,0

≥ 1

2
) ∀j ∈ [s]

A.2 Detailed pseudocode for NCEFP algorithm

See Algorithm 2.

A.3 Detailed pseudocode for NCOC algorithm

See Algorithm 3.

A.4 NCOC-Ham-IFN algorithm

As noted in Section 4.3, under the IFN model, noise matrices C are (to our knowledge) computation-
ally expensive to invert, which makes it difficult to run the NCOC algorithm for such noise matrices
in practice. For the special case of Hamming loss under the IFN model, we present an alternative
faster noise-corrected output coding algorithm – that we call NCOC-Ham-IFN – that decomposes the
problem of estimating statistics q(x) into a different set of s binary CPE problems obtained using a
different coding matrix Ã′′ that does not require inverting C⊤.

Recall from Example 1 that LHam = A⊤B+1t⊤ where A ∈ [0, 1]s×|Y| with aj,y = yj , B ∈ Rs×|Y|

with bj,ŷ =
1−2ŷj
s , and t ∈ R|Y| with tŷ =

∑s
j=1

ŷj
s = 1

s∥ŷ∥1. Recall also that the s-dimensional
vector statistic q(x) defined as

q(x) = Aη(x)

is Bayes-sufficient for LHam. We will express the desired statistics q(x) in terms of η̃(x) using a

matrix ˜̃A that does not require inverting C⊤, and will then use a shifted and scaled version of this
matrix to obtain Ã′′.

We have that
qj(x) = P(Yj = 1|x) ∀j ∈ [s] .
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Algorithm 2 Noise-Corrected Exact F-measure Plug-in (NCEFP) for F1-measure

1: Inputs:
(1) Noisy training sample, S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m

(2) Noise matrix C ∈ [0, 1]|Y|×|Y|

2: Parameters:
(1) Class F of functions f : X→Rs2+1

3: Let A ∈ [0, 1](s
2+1)×|Y| be
a0,y = 1(∥y∥1 = 0) ; ajk,y = 1(∥y∥1 = k) · yj ∀j, k ∈ [s]

4: Let Ã = A(C⊤)−1, and define ãmin = min(miny ã0,y,miny,jk ãjk,y) and ãmax =
max(maxy ã0,y,maxy,jk ãjk,y)

5: Construct Ã′ ∈ [0, 1](s
2+1)×|Y| by shifting and scaling Ã as

ã′0,y =
ã0,y − ãmin

ãmax − ãmin
∈ [0, 1] ; ã′jk,y =

ãjk,y − ãmin

s · (ãmax − ãmin)
∈ [0, 1] ∀j, k ∈ [s]

6: Compute f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)), where ψ is as defined as

ψ(y,u) = ã′0,y · ϕlog(1, u0) + (1− ã′0,y) · ϕlog(0, u0)+
s∑
j=1

[ s∑
k=1

ã′jk,yϕmlog(k, (uj1, ..., ujs)) + (1−
s∑

k=1

ã′jk,y)ϕmlog(s+ 1, (uj1, ..., ujs))
]

7: Output:
Multi-label classifier

ĥ(x) = argmin
ŷ∈Y

{
1− [(ãmax − ãmin) · q̂′0(x) + ãmin] · 1(∥ŷ∥1 = 0)

−
s∑
j=1

s∑
k=1

[s · (ãmax − ãmin) · q̂′jk(x) + ãmin] ·
2 · ŷj

k + ∥ŷ∥1

}
where q̂′0(x) = γ−1

log(f̂0(x)) and q̂′jk(x) =
(
γ−1

mlog(f̂j1(x), ..., f̂js(x))
)
k

Algorithm 3 Noise-Corrected Output Coding (NCOC)

1: Inputs:
(1) Noisy training sample, S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m

(2) Target loss L ∈ R|Y|×|Y|
+ factorized as L = A⊤B + 1t⊤ for some A ∈ [0, 1]r×|Y|,B ∈

Rr×|Y|, t ∈ R|Y|

(3) Noise matrix C ∈ [0, 1]|Y|×|Y|

2: Parameters:
(1) Class F of functions f : X→Rr

3: Let Ã = A(C⊤)−1, and define ãmin = miny,j ãj,y and ãmax = maxy,j ãj,y
4: Construct Ã′ ∈ [0, 1]r×|Y| by shifting and scaling Ã as

ã′j,y =
ãj,y − ãmin

ãmax − ãmin
∈ [0, 1] ∀j ∈ [r]

5: Compute f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)), where ψ is defined as

ψ(y,u) =

r∑
j=1

(
ã′j,yϕlog(1, uj) + (1− ã′j,y)ϕlog(0, uj)

)
6: Output:

Multi-label classifier

ĥ(x) = argmin
ŷ∈Y

{
tŷ +

r∑
j=1

[(ãmax − ãmin) · γ−1
log(f̂j(x)) + ãmin] · bj,ŷ

}
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Algorithm 4 NCOC-Ham-IFN for Hamming loss under IFN

1: Inputs:
(1) Noisy training sample, S̃ = ((x1, ỹ1), . . . , (xm, ỹm)) ∈ (X × Y)m

(2) Noise rates c(j)0,1, c
(j)
1,0 ∀j ∈ [s]

2: Parameters:
(1) Class F of functions f : X→Rs

3: Let c0,1 = [c
(1)
0,1, ..., c

(s)
0,1]

⊤ ∈ [0, 1)s, and define a diagonal matrix Λ of size s× s such that its
i-th diagonal element is 1

1−c(i)0,1−c
(i)
1,0

4: Let ˜̃A = Λ(A− c0,11
⊤), and define ˜̃amin = miny,j ˜̃aj,y and ˜̃amax = maxy,j ˜̃aj,y

5: Construct Ã′′ ∈ [0, 1]s×|Y| by shifting and scaling ˜̃A as

ã′′j,y =
˜̃aj,y − ˜̃amin˜̃amax − ˜̃amin

∈ [0, 1] ∀j ∈ [s] .

6: Compute f̂ ∈ argminf∈F
1
m

∑m
i=1 ψ(ỹi, f(xi)), where ψ is defined as

ψ(y,u) =
s∑
j=1

(
ã′′j,yϕlog(1, uj) + (1− ã′′j,y)ϕlog(0, uj)

)
7: Output:

Multi-label classifier

ĥ(x) = argmin
ŷ∈Y

{1
s
∥ŷ∥1 +

s∑
j=1

[(˜̃amax − ˜̃amin) · γ−1
log(f̂j(x)) +

˜̃amin] ·
1− 2ŷj

s

}

Next, as in Section 4.1, define q′(x) = Aη̃(x) so that

q′j(x) = P(Ỹj = 1|x) ∀j ∈ [s] .

Under the IFN model where c(j)0,1 + c
(j)
1,0 < 1 ∀j ∈ [s], qj(x) and q′j(x) are related by

qj(x) =
q′j(x)− c

(j)
0,1

1− c
(j)
0,1 − c

(j)
1,0

∀j ∈ [s] .

Let c0,1 = [c
(1)
0,1, ..., c

(s)
0,1]

⊤ ∈ [0, 1)s. Define a diagonal matrix Λ of size s × s such that its i-th
diagonal element is 1

1−c(i)0,1−c
(i)
1,0

. Then we can write

q(x) = Λ(q′(x)− c0,1) .

Now, define ˜̃
A = Λ(A− c0,11

⊤) ,

where 1 here is a |Y| × 1 vector. Then ˜̃A also has size s× |Y|, and we have˜̃
Aη̃(x) = Λ(A− c0,11

⊤)η̃(x)

= Λ(Aη̃(x)− c0,11
⊤η̃(x))

= Λ(q′(x)− c0,1)

= q(x) .

Thus we have that statistics q(x) can be expressed in terms of η̃(x) as q(x) = ˜̃
Aη̃(x), where ˜̃A

does not require inverting C⊤.

Again, in order to set up suitably weighted binary CPE problems that can allow us to estimate
these statistics from the noisy training sample, we will use a shifted and scaled matrix Ã′′ to
estimate related statistics q′′(x), and then factor back in the scaling and shifting when making a final
prediction. Towards this, define ˜̃amin = miny,j ˜̃aj,y and ˜̃amax = maxy,j ˜̃aj,y, and define the entries
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of Ã′′ ∈ [0, 1]s×|Y| as

ã′′j,y =
˜̃aj,y − ˜̃amin˜̃amax − ˜̃amin

∈ [0, 1] ∀j ∈ [s] .

We note again that matrix Ã′′ here is different from that used for the NCOC algorithm in Section 4.3;
in particular, now we do not need to compute (C⊤)−1. Next, define q′′(x) = Ã′′η̃(x). Then, for
each j ∈ [s], we set up a weighted binary CPE problem with weights (ã′′j,y, (1− ã′′j,y)) to estimate
q′′j (x). Finally, given estimated statistics q̂′′(x) estimated in this way from the noisy training sample,
our NCOC-Ham-IFN algorithm outputs the multi-label classifier

ĥ(x) = argmin
ŷ∈Y

{1
s
∥ŷ∥1 +

s∑
j=1

[(˜̃amax − ˜̃amin) · q̂′′j (x) + ˜̃amin] ·
1− 2ŷj

s

}
.

Estimating q′′(x). Our implementation of NCOC-Ham-IFN uses weighted binary logistic loss
minimizers for the weighted CPE learners. In particular, we first learn a vector of s real-valued
functions f̂ : X→Rs by minimizing the s-dimensional convex surrogate loss ψ : Y × Rs→R+

defined as

ψ(y,u) =
s∑
j=1

(
ã′′j,yϕlog(1, uj) + (1− ã′′j,y)ϕlog(0, uj)

)
over the noisy training sample S̃. Specifically, f̂ ∈ argminf∈F

1
m

∑m
i=1 ψ(ỹi, f(xi)) for a suitable

class of real-valued vector functions F ⊆ {f : X→Rs}. The estimated statistics are then given by
q̂′′j (x) = γ−1

log(f̂j(x)).

Detailed pseudocode is in Algorithm 4.
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B Supplement to Section 5

B.1 Proof of Theorem 1

In this section, we prove a more general version of Theorem 1 that can handle the case when estimated
noise rates ĉ(j)0,1 and ĉ(j)1,0 are used in place of the true noise rates c(j)0,1 and c(j)1,0. Therefore, setting

ĉ
(j)
0,1 = c

(j)
0,1 and ĉ(j)1,0 = c

(j)
1,0 for j ∈ [s] in the theorem below proves Theorem 1.

Theorem 4 (More general version of Theorem 1). Consider Hamming loss LHam (Eq. (1)) under
IFN model. Assume c(j)0,1 + c

(j)
1,0 < 1 for all j ∈ [s]. Let D be any distribution on X × Y with

corresponding noisy distribution D̃. Let ĉ(j)0,1 ≥ 0 and ĉ(j)1,0 ≥ 0 be estimated noise rates such that

ĉ
(j)
0,1 + ĉ

(j)
1,0 < 1 for j ∈ [s]. Suppose NCPLUG (Section 4.1) is run with noisy training sample S̃ (in

which examples are sampled i.i.d. from D̃) and estimated noise rates ĉ(j)0,1 and ĉ(j)1,0 in place of c(j)0,1

and c(j)1,0, for all j ∈ [s]. Let ψ, f̂ , ĥ be as defined in Section 4.1. Then we have

regretL
Ham

D [ĥ] ≤ 1√
s
max
i

1

1− ĉ
(i)
0,1 − ĉ

(i)
1,0

√
2regretψ

D̃
[̂f ]+

2

s

s∑
j=1

|ĉ(j)0,1 + ĉ
(j)
1,0 − c

(j)
0,1 − c

(j)
1,0|+ |c(j)0,1(1− ĉ

(j)
1,0)− ĉ

(j)
0,1(1− c

(j)
1,0)|

(1− c
(j)
0,1 − c

(j)
1,0)(1− ĉ

(j)
0,1 − ĉ

(j)
1,0)

.

Moreover, if ĉ(j)0,1 = c
(j)
0,1 and ĉ(j)1,0 = c

(j)
1,0 for all j ∈ [s], the above bound can be simplified to

regretL
Ham

D [ĥ] ≤ 1√
s
max
i

1

1− c
(i)
0,1 − c

(i)
1,0

√
2regretψ

D̃
[̂f ] .

We will need the following lemma from [1] in the proof.

Lemma 5 (Property of the binary logistic loss [1]). Recall that the binary logistic loss ϕlog :
{0, 1} × R→R+ is defined as

ϕlog(y, u) = ln(1 + e−(2y−1)u) ,

and the invertible link function γlog : [0, 1]→R together with its inverse γ−1
log : R→[0, 1] is given by

γlog(p) = ln(
p

1− p
) ;

γ−1
log(u) =

1

1 + exp(−u)
.

Then for all q ∈ [0, 1] and u ∈ R:

EY∼Bernoulli(q)

[
ϕlog(Y, u)− ϕlog(Y, γlog(q))

]
≥ 2

(
γ−1
log(u)− q

)2
,

where Y ∼ Bernoulli(q) denotes a Bernoulli random variable that takes value 1 with probability q
and value 0 with probability 1− q.

Proof of Theorem 4.

Proof. Recall that the multi-label surrogate ψ : Y × Rs→R+ here is given by

ψ(y,u) =

s∑
j=1

ϕlog(yj , uj) . (5)

Also, given q̂′j(x) = γ−1
log(f̂j(x)) estimated from S̃, the multi-label classifier output by our NCPLUG

algorithm is given by

ĥj(x) = 1
( q̂′j(x)− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

≥ 1
2

)
∀j ∈ [s] . (6)
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To simplify notations, in what follows, we let L = LHam, ϕ = ϕlog, γ = γlog, f = f̂ , and h = ĥ. We
also let qj(x) = P(Yj = 1|x) and q̃j(x) = P(Ỹj = 1|x) for j ∈ [s].

regretLD[h]

=
1

s

s∑
j=1

Ex

[
(1− 2qj(x)) · [1(

γ−1(fj(x))− ĉ
(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

≥ 1

2
)− 1(qj(x) ≥

1

2
)]

]

≤ 2

s

s∑
j=1

Ex

[
|
γ−1(fj(x))− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

− qj(x)|
]

=
2

s

s∑
j=1

Ex

[
|
γ−1(fj(x))− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

−
q̃j(x)− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

+
q̃j(x)− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

− qj(x)|
]

≤ 2

s

s∑
j=1

Ex

[
|
γ−1(fj(x))− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

−
q̃j(x)− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

|+ |
q̃j(x)− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

− qj(x)|
]

=
2

s

s∑
j=1

Ex

[
|
γ−1(fj(x))− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

−
q̃j(x)− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

|
]
+

2

s

s∑
j=1

Ex

[
|
q̃j(x)− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

− qj(x)|
]
.

(7)

We bound the first sum as follows:

2

s

s∑
j=1

Ex

[
|
γ−1(fj(x))− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

−
q̃j(x)− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

|
]

=
2

s

s∑
j=1

1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

Ex

[
|γ−1(fj(x))− q̃j(x)|

]

≤ 2

s
max
i

1

1− ĉ
(i)
0,1 − ĉ

(i)
1,0

Ex

[ s∑
j=1

|γ−1(fj(x))− q̃j(x)|
]

≤ 2

s
max
i

1

1− ĉ
(i)
0,1 − ĉ

(i)
1,0

Ex

[√
s

√√√√ s∑
j=1

(
γ−1(fj(x))− q̃j(x)

)2]

=
2√
s
max
i

1

1− ĉ
(i)
0,1 − ĉ

(i)
1,0

Ex

[√√√√ s∑
j=1

(
γ−1(fj(x))− q̃j(x)

)2]
. (8)

By Lemma 5, we have

Ex

[ s∑
j=1

(
γ−1(fj(x))− q̃j(x)

)2]

≤ 1

2
Ex

[ s∑
j=1

Ey∼Bernoulli(q̃j(x))

[
ϕ(y, fj(x))− ϕ(y, γ(q̃j(x)))

]]

=
1

2
Ex

[
Ey|x∼η̃(x)

[
ψ(y, f(x))− inf

u∈Rr
ψ(y,u)

]]
=

1

2
regretψ

D̃
[f ] . (9)
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Next, we bound the second sum in Eq. (7) as follows:

2

s

s∑
j=1

Ex

[
|
q̃j(x)− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

− qj(x)|
]

=
2

s

s∑
j=1

Ex

[
|
q̃j(x)− ĉ

(j)
0,1

1− ĉ
(j)
0,1 − ĉ

(j)
1,0

−
q̃j(x)− c

(j)
0,1

1− c
(j)
0,1 − c

(j)
1,0

|
]

=
2

s

s∑
j=1

Ex

[
|q̃j(x)(ĉ(j)0,1 + ĉ

(j)
1,0 − c

(j)
0,1 − c

(j)
1,0) + ĉ

(j)
0,1(c

(j)
1,0 − 1) + c

(j)
0,1(1− ĉ

(j)
1,0)|

]
(1− c

(j)
0,1 − c

(j)
1,0)(1− ĉ

(j)
0,1 − ĉ

(j)
1,0)

≤ 2

s

s∑
j=1

|ĉ(j)0,1 + ĉ
(j)
1,0 − c

(j)
0,1 − c

(j)
1,0|+ |c(j)0,1(1− ĉ

(j)
1,0)− ĉ

(j)
0,1(1− c

(j)
1,0)|

(1− c
(j)
0,1 − c

(j)
1,0)(1− ĉ

(j)
0,1 − ĉ

(j)
1,0)

. (10)

Combining Eqs. (7), (8), (9) and (10) and applying Jensen’s inequality (to the convex function
x 7→ x2), we have

regretLD[h] ≤
1√
s
max
i

1

1− ĉ
(i)
0,1 − ĉ

(i)
1,0

√
2regretψ

D̃
[f ]+

2

s

s∑
j=1

|ĉ(j)0,1 + ĉ
(j)
1,0 − c

(j)
0,1 − c

(j)
1,0|+ |c(j)0,1(1− ĉ

(j)
1,0)− ĉ

(j)
0,1(1− c

(j)
1,0)|

(1− c
(j)
0,1 − c

(j)
1,0)(1− ĉ

(j)
0,1 − ĉ

(j)
1,0)

.

B.2 Proof of Theorem 2

In this section, we prove a more general version of Theorem 2 that can handle the case when an
estimated noise matrix Ĉ is used in place of the true noise matrix C. Therefore, setting Ĉ = C in
the theorem below proves Theorem 2.

Theorem 6 (More general version of Theorem 2). Consider F -measure LF1 (Eq. (2)) under the
general CCN model. Assume noise matrix C is invertible. Let D be any distribution on X × Y with
corresponding noisy distribution D̃. Let Ĉ be an estimated (invertible) noise matrix for the noise
matrix C. Suppose NCEFP (Section 4.2) is run with noisy training sample S̃ (in which examples
are sampled i.i.d. from D̃) and estimated noise matrix Ĉ in place of C. Let ψ, f̂ , ĥ be as defined in
Section 4.2, and let A ∈ [0, 1](s

2+1)×|Y|, B ∈ R(s2+1)×|Y|, and t ∈ R|Y| be as defined in Example
2. Then we have

regretL
F1

D [ĥ] ≤ 2max
ŷ

∥bŷ∥2 ·

(
∥A∥2∥(C⊤)−1 − (Ĉ⊤)−1∥2 + 2∥A∥1∥(Ĉ⊤)−1∥1s

√
2regretψ

D̃
[̂f ]

)
.

Further, if Ĉ = C, the above bound can be simplified to

regretL
F1

D [ĥ] ≤ 4smax
ŷ

∥bŷ∥2 · ∥A∥1∥(C⊤)−1∥1
√
2regretψ

D̃
[̂f ] .

We will need the following lemma from [48] in the proof.

Lemma 7 (Property of the multiclass logistic loss [48]). Recall that the multiclass logistic loss
ϕmlog : [n]× Rn−1 → R+ is defined as

ϕmlog(y,u) =

− ln
(

exp(uy)

1+
∑n−1

i=1 exp(ui)

)
if y ∈ [n− 1]

ln
(
1 +

∑n−1
i=1 exp(ui)

)
if y = n

,
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and the invertible link function γmlog : ∆n → Rn−1 together with its inverse γ−1
mlog : Rn−1 → ∆n is

given by

γmlog(p)=

 ln( p1pn )
...

ln(pn−1

pn
)

; γ−1
mlog(u)=


exp(u1)

1+
∑n−1

i=1 exp(ui)

...
exp(un)

1+
∑n−1

i=1 exp(ui)

1
1+

∑n−1
i=1 exp(ui)

 .

Then for all p ∈ ∆n and u ∈ Rn−1,

EY∼p

[
ϕmlog(Y,u)− ϕmlog(Y,γmlog(p))

]
≥ 1

2

∥∥γ−1
mlog(u)− p

∥∥2
2
.

Proof of Theorem 6.

Proof. For clarity, we redefine here all quantities involving Ĉ. In particular, define Â = A(Ĉ⊤)−1,
âmin = min(miny â0,y,miny,jk âjk,y) and âmax = max(maxy â0,y,maxy,jk âjk,y), and let

â′0,y =
â0,y − âmin

âmax − âmin
∈ [0, 1] ,

and

â′jk,y =
âjk,y − âmin

s · (âmax − âmin)
∈ [0, 1] ∀j, k ∈ [s] .

Here, the multi-label surrogate ψ : Y × Rs2+1→R+ then becomes
ψ(y,u) = â′0,y · ϕlog(1, u0) + (1− â′0,y) · ϕlog(0, u0)+

s∑
j=1

[ s∑
k=1

â′jk,yϕmlog(k, (uj1, ..., ujs)) + (1−
s∑

k=1

â′jk,y)ϕmlog(s+ 1, (uj1, ..., ujs))
]
.

(11)

Also, given q̂′0(x) = γ−1
log(f̂0(x)) and q̂′jk(x) =

(
γ−1

mlog(f̂j1(x), ..., f̂js(x))
)
k

estimated from S̃, the
multi-label classifier output by our NCEFP algorithm is given by

ĥ(x) = argmin
ŷ∈Y

{
1 + [(âmax − âmin) · q̂′0(x) + âmin] · b0,ŷ

+

s∑
j=1

s∑
k=1

[s · (âmax − âmin) · q̂′jk(x) + âmin] · bjk,ŷ
}
. (12)

We use ⟨·, ·⟩ to denote the standard inner product. Let α̂ = (âmax− âmin) and β̂ = âmin. To simplify
notations, in what follows, we let L = LF1 , f = f̂ and h = ĥ.

We let
g(f(x), ŷ) := (α̂γ−1

log(f0(x)) + β̂) · (b0,h(x) − b0,ŷ)

+ α̂s

s∑
j=1

s∑
k=1

(γ−1
mlog(fj1(x), ..., fjs(x)))k · (bjk,h(x) − bjk,ŷ)

+ β̂

s∑
j=1

s∑
k=1

(bjk,h(x) − bjk,ŷ)

+ (th(x) − tŷ) . (13)
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regretLD[h]

= Ex

[
⟨η(x), ℓh(x)⟩ −min

ŷ∈Y
⟨η(x), ℓŷ⟩

]
= Ex

[
max
ŷ

⟨η(x), ℓh(x) − ℓŷ⟩
]

= Ex

[
max
ŷ

⟨η(x),A⊤bh(x) + th(x)1−A⊤bŷ − tŷ1⟩
]

= Ex

[
max
ŷ

⟨η(x),A⊤(bh(x) − bŷ) + (th(x) − tŷ)1⟩
]

= Ex

[
max
ŷ

[
⟨η(x),A⊤(bh(x) − bŷ)⟩+ (th(x) − tŷ)

]]
= Ex

[
max
ŷ

[
⟨Aη(x),bh(x) − bŷ⟩+ (th(x) − tŷ)

]]
(by property of adjoint)

= Ex

[
max
ŷ

[
⟨Aη(x),bh(x) − bŷ⟩+ (th(x) − tŷ)− g(f(x), ŷ) + g(f(x), ŷ)

]]
≤ Ex

[
max
ŷ

[
⟨Aη(x),bh(x) − bŷ⟩+ (th(x) − tŷ)− g(f(x), ŷ)

]]
(

Since by Eq. (12), g(f(x), ŷ) ≤ 0 for all ŷ
)

= Ex

[
max
ŷ

[
[(Aη(x))0 − α̂γ−1

log(f0(x))− β̂] · (b0,h(x) − b0,ŷ)

+

s∑
j=1

s∑
k=1

[(Aη(x))jk − α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k − β̂] · (bjk,h(x) − bjk,ŷ)

]]

≤ Ex

[
max
ŷ

∥bh(x) − bŷ∥2 ·
[
[(Aη(x))0 − α̂γ−1

log(f0(x))− β̂]2+

s∑
j=1

s∑
k=1

[(Aη(x))jk − α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k − β̂]2

] 1
2

]
(by the Cauchy-Schwarz inequality)

≤ 2max
ŷ

∥bŷ∥2 ·Ex
[[
[(Aη(x))0 − α̂γ−1

log(f0(x))− β̂]2+

s∑
j=1

s∑
k=1

[(Aη(x))jk − α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k − β̂]2

] 1
2

]
. (14)

For all x ∈ X , let ζ(x) ∈ Rs2+1 be such that

ζ0(x) = α̂γ−1
log(f0(x)), ζjk(x) = α̂s(γ−1

mlog(fj1(x), ..., fjs(x)))k . (15)

Then Eq. (14) can be written as

regretLD[h] ≤ 2max
ŷ

∥bŷ∥2 ·Ex
[
∥Aη(x)− ζ(x)− β̂1∥2

]
= 2max

ŷ
∥bŷ∥2 ·Ex

[
∥Aη(x)− Âη̃(x) + Âη̃(x)− ζ(x)− β̂1∥2

]
≤ 2max

ŷ
∥bŷ∥2 ·Ex

[
∥Aη(x)− Âη̃(x)∥2 + ∥Âη̃(x)− ζ(x)− β̂1∥2

]
. (16)
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Note that,

Ex

[
∥Aη(x)− Âη̃(x)∥2

]
= Ex

[
∥A(C⊤)−1η̃(x)−A(Ĉ⊤)−1η̃(x)∥2

]
= Ex

[
∥A
(
(C⊤)−1 − (Ĉ⊤)−1

)
η̃(x)∥2

]
≤ ∥A∥2 · ∥(C⊤)−1 − (Ĉ⊤)−1∥2 ·Ex

[
∥η̃(x)∥2

]
≤ ∥A∥2 · ∥(C⊤)−1 − (Ĉ⊤)−1∥2 . (17)

Moreover,

Ex

[
∥Âη̃(x)− ζ(x)− β̂1∥22

]
= Ex

[
[(Âη̃(x))0 − α̂γ−1

log(f0(x))− β̂]2+

s∑
j=1

s∑
k=1

[(Âη̃(x))jk − α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k − β̂]2

]

= Ex

[
[
∑
y

â0,y · η̃y(x)− α̂γ−1
log(f0(x))− β̂]2+

s∑
j=1

s∑
k=1

[
∑
y

âjk,y · η̃y(x)− α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k − β̂]2

]

= Ex

[
[
∑
y

(α̂ · â′0,y + β̂) · η̃y(x)− α̂γ−1
log(f0(x))− β̂]2+

s∑
j=1

s∑
k=1

[
∑
y

(α̂s · â′jk,y + β̂) · η̃y(x)− α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k − β̂]2

]

= Ex

[
[α̂(Â′η̃(x))0 − α̂γ−1

log(f0(x))]
2+

s∑
j=1

s∑
k=1

[α̂s(Â′η̃(x))jk − α̂s(γ−1
mlog(fj1(x), ..., fjs(x)))k]

2

]

= Ex

[
α̂2[(Â′η̃(x))0 − γ−1

log(f0(x))]
2 + α̂2s2

s∑
j=1

s∑
k=1

[(Â′η̃(x))jk − (γ−1
mlog(fj1(x), ..., fjs(x)))k]

2

]
.

(18)

Note that (Â′η̃(x))0 ∈ [0, 1]. By Lemma 5, we have[
(Â′η̃(x))0 − γ−1

log(f0(x))
]2

≤ 1

2
E
y∼Bernoulli

(
(Â′η̃(x))0

)[ϕlog(y, f0(x))− ϕlog

(
y, γlog

(
(Â′η̃(x))0

))]
. (19)
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By Lemma 7, we have
s∑

k=1

[
(Â′η̃(x))jk − (γ−1

mlog(fj1(x), ..., fjs(x)))k

]2
≤
[
1−

s∑
k=1

(Â′η̃(x))jk − 1 +

s∑
k=1

(γ−1
mlog(fj1(x), ..., fjs(x)))k

]2
+

s∑
k=1

[
(Â′η̃(x))jk − (γ−1

mlog(fj1(x), ..., fjs(x)))k

]2
≤ 2Ey∼pj(x)

[
ϕmlog

(
y, (fj1(x), ..., fjs(x))

)
− ϕmlog

(
y,γmlog

(
pj(x)

))]
, (20)

where pj(x) ∈ ∆s+1 is

pj(x) =


(Â′η̃(x))j1

...
(Â′η̃(x))js

1−
∑s
k=1(Â

′η̃(x))jk

 . (21)

Then, Eq. (18) becomes

Ex

[
∥Âη̃(x)− ζ(x)− β̂1∥22

]
= Ex

[
α̂2[(Â′η̃(x))0 − γ−1

log(f0(x))]
2 + α̂2s2

s∑
j=1

s∑
k=1

[(Â′η̃(x))jk − (γ−1
mlog(fj1(x), ..., fjs(x)))k]

2

]

≤ Ex

[
α̂2 1

2
E
y∼Bernoulli

(
(Â′η̃(x))0

)[ϕlog(y, f0(x))− ϕlog

(
y, γlog

(
(Â′η̃(x))0

))]
+ 2α̂2s2

s∑
j=1

Ey∼pj(x)

[
ϕmlog

(
y, (fj1(x), ..., fjs(x))

)
− ϕmlog

(
y,γmlog

(
pj(x)

))]]

≤ 2α̂2s2 ·Ex
[
E
y∼Bernoulli

(
(Â′η̃(x))0

)[ϕlog(y, f0(x))− ϕlog

(
y, γlog

(
(Â′η̃(x))0

))]
+

s∑
j=1

Ey∼pj(x)

[
ϕmlog

(
y, (fj1(x), ..., fjs(x))

)
− ϕmlog

(
y,γmlog

(
pj(x)

))]]

= 2α̂2s2 ·Ex
[
Ey|x∼η̃(x)

[
ψ(y, f(x))− inf

u∈Rs2+1

ψ(y,u)
]]

= 2α̂2s2 · regretψ
D̃
[f ] . (22)

Combining Eqs. (16), (17) and (22) and applying Jensen’s inequality (to the convex function x 7→ x2),
we have

regretLD[h] ≤ 2max
ŷ

∥bŷ∥2 ·

(
∥A∥2∥(C⊤)−1 − (Ĉ⊤)−1∥2 + α̂s

√
2regretψ

D̃
[f ]

)
.

We can further bound α̂ by
α̂ = âmax − âmin

≤ 2∥Â∥1
= 2∥A(Ĉ⊤)−1∥1
≤ 2∥A∥1∥(Ĉ⊤)−1∥1 .
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B.3 Proof of Theorem 3

In this section, we prove a more general version of Theorem 3 that can handle the case when an
estimated noise matrix Ĉ is used in place of the true noise matrix C. Therefore, setting Ĉ = C in
the theorem below proves Theorem 3.

Theorem 8 (More general version of Theorem 3). Consider a general low-rank loss matrix L
written as L = A⊤B+1t⊤ for some A ∈ [0, 1]r×|Y|,B ∈ Rr×|Y|, t ∈ R|Y|, under the general CCN
model. Assume noise matrix C is invertible. Let D be any distribution on X × Y with corresponding
noisy distribution D̃. Let Ĉ be an estimated (invertible) noise matrix for the noise matrix C. Suppose
NCOC (Section 4.3) is run with noisy training sample S̃ (in which examples are sampled i.i.d. from
D̃) and estimated noise matrix Ĉ in place of C. Let ψ, f̂ , ĥ be as defined in Section 4.3. Then we
have

regretLD[ĥ] ≤ 2max
ŷ

∥bŷ∥2 ·

(
∥A∥2∥(C⊤)−1 − (Ĉ⊤)−1∥2 + ∥A∥1∥(Ĉ⊤)−1∥1

√
2regretψ

D̃
[̂f ]

)
.

Further, if Ĉ = C, the above bound can be simplified to

regretLD[ĥ] ≤ 2max
ŷ

∥bŷ∥2 · ∥A∥1∥(C⊤)−1∥1
√

2regretψ
D̃
[̂f ] .

Proof. For clarity, we redefine here all quantities involving Ĉ. In particular, define Â = A(Ĉ⊤)−1,
âmin = miny,j âj,y and âmax = maxy,j âj,y, and let

â′j,y =
âj,y − âmin

âmax − âmin
∈ [0, 1] ∀j ∈ [r] .

Here, the multi-label surrogate ψ : Y × Rr→R+ then becomes

ψ(y,u) =

r∑
j=1

(
â′j,yϕ(1, uj) + (1− â′j,y)ϕ(0, uj)

)
. (23)

Also, given q̂′j(x) = γ−1
log(f̂j(x)) estimated from S̃, the multi-label classifier output by our NCOC

algorithm is given by

ĥ(x) = argmin
ŷ∈Y

{
tŷ +

r∑
j=1

[(âmax − âmin) · q̂′j(x) + âmin] · bj,ŷ
}
. (24)

We use ⟨·, ·⟩ to denote the standard inner product. Let α̂ = (âmax − âmin) and β̂ = âmin. To
simplify notations, in what follows, we let ϕ = ϕlog, γ = γlog, f = f̂ , and h = ĥ. For u ∈ Rr, let
γ−1(u) ∈ [0, 1]r be such that the i-indexed entry of γ−1(u) is simply γ−1(ui).
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regretLD[h]

= Ex

[
⟨η(x), ℓh(x)⟩ −min

ŷ∈Y
⟨η(x), ℓŷ⟩

]
= Ex

[
max
ŷ

⟨η(x), ℓh(x) − ℓŷ⟩
]

= Ex

[
max
ŷ

⟨η(x),A⊤bh(x) + th(x)1−A⊤bŷ − tŷ1⟩
]

= Ex

[
max
ŷ

⟨η(x),A⊤(bh(x) − bŷ) + (th(x) − tŷ)1⟩
]

= Ex

[
max
ŷ

[
⟨η(x),A⊤(bh(x) − bŷ)⟩+ (th(x) − tŷ)

]]
= Ex

[
max
ŷ

[
⟨Aη(x),bh(x) − bŷ⟩+ (th(x) − tŷ)

]]
(by property of adjoint)

= Ex

[
max
ŷ

[
⟨Aη(x)− (α̂γ−1(f(x)) + β̂1),bh(x) − bŷ⟩+

⟨(α̂γ−1(f(x)) + β̂1),bh(x) − bŷ⟩+ (th(x) − tŷ)
]]

≤ Ex

[
max
ŷ

⟨Aη(x)− (α̂γ−1(f(x)) + β̂1),bh(x) − bŷ⟩
]

(
Since by Eq. (24), ⟨(α̂γ−1(f(x)) + β̂1),bh(x) − bŷ⟩+ (th(x) − tŷ) ≤ 0 for all ŷ

)
≤ Ex

[
∥Aη(x)− (α̂γ−1(f(x)) + β̂1)∥2 ·max

ŷ
∥bh(x) − bŷ∥2

]
(by the Cauchy-Schwarz inequality)

≤ 2max
ŷ

∥bŷ∥2 ·Ex
[
∥Aη(x)− (α̂γ−1(f(x)) + β̂1)∥2

]
= 2max

ŷ
∥bŷ∥2 ·Ex

[
∥Aη(x)− Âη̃(x) + Âη̃(x)− (α̂γ−1(f(x)) + β̂1)∥2

]
≤ 2max

ŷ
∥bŷ∥2 ·Ex

[
∥Aη(x)− Âη̃(x)∥2 + ∥Âη̃(x)− (α̂γ−1(f(x)) + β̂1)∥2

]
= 2max

ŷ
∥bŷ∥2 ·Ex

[
∥Aη(x)− Âη̃(x)∥2

]
+ 2max

ŷ
∥bŷ∥2 ·Ex

[
∥Âη̃(x)− (α̂γ−1(f(x)) + β̂1)∥2

]
.

(25)

Note that,

Ex

[
∥Aη(x)− Âη̃(x)∥2

]
= Ex

[
∥A(C⊤)−1η̃(x)−A(Ĉ⊤)−1η̃(x)∥2

]
= Ex

[
∥A
(
(C⊤)−1 − (Ĉ⊤)−1

)
η̃(x)∥2

]
≤ ∥A∥2 · ∥(C⊤)−1 − (Ĉ⊤)−1∥2 ·Ex

[
∥η̃(x)∥2

]
≤ ∥A∥2 · ∥(C⊤)−1 − (Ĉ⊤)−1∥2 . (26)
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Moreover,

Ex

[
∥Âη̃(x)− (α̂γ−1(f(x)) + β̂1)∥22

]
= Ex

[
∥(Â− β̂11⊤)η̃(x)− α̂γ−1(f(x))∥22

]
= Ex

[
α̂2∥ (Â− β̂11⊤)

α̂
η̃(x)− γ−1(f(x))∥22

]
= Ex

[
α̂2∥Â′η̃(x)− γ−1(f(x))∥22

]
(because Â′ =

Â− âmin11
⊤

âmax − âmin
=

Â− β̂11⊤

α̂
)

= Ex

[
α̂2

r∑
j=1

[
(Â′η̃(x))j − γ−1(fj(x))

]2]
. (27)

Note that (Â′η̃(x))j ∈ [0, 1]. By Lemma 5, we have[
(Â′η̃(x))j − γ−1(fj(x))

]2
≤ 1

2
E
y∼Bernoulli

(
(Â′η̃(x))j

)[ϕ(y, fj(x))− ϕ
(
y, γ
(
(Â′η̃(x))j

))]
.

Then Eq. (27) becomes

Ex

[
∥Âη̃(x)− (α̂γ−1(f(x)) + β̂1)∥22

]
= Ex

[
α̂2

r∑
j=1

[
(Â′η̃(x))j − γ−1(fj(x))

]2]

≤ Ex

[
α̂2

r∑
j=1

1

2
E
y∼Bernoulli

(
(Ã′η̃(x))j

)[ϕ(y, fj(x))− ϕ
(
y, γ
(
(Â′η̃(x))j

))]]

=
α̂2

2
Ex

[
Ey|x∼η̃(x)

[
ψ(y, f(x))− inf

u∈Rr
ψ(y,u)

]]
=
α̂2

2
regretψ

D̃
[f ] . (28)

Combining Eqs. (25), (26) and (28) and applying Jensen’s inequality (to the convex function x 7→ x2),
we have

regretLD[h] ≤ 2max
ŷ

∥bŷ∥2 ·

(
∥A∥2∥(C⊤)−1 − (Ĉ⊤)−1∥2 + α̂

√
1

2
regretψ

D̃
[f ]

)
.

We can further bound α̂ by
α̂ = âmax − âmin

≤ 2∥Â∥1
= 2∥A(Ĉ⊤)−1∥1
≤ 2∥A∥1∥(Ĉ⊤)−1∥1 .
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C Supplement to Section 6

Under an STSN model where the set of s tags T = [s] is partitioned into K (K ≤ s) groups of
tags G1, ..., GK , the label space Y ⊆ {0, 1}s contains only y ∈ {0, 1}s with ∥yGk

∥1 ≤ 1 for all
groups Gk (since each group has at most 1 active tag). In this setting as well, the output mappings
f̂(x) 7→ ĥ(x) that appear at the end of the NCEFP and NCOC algorithms, that require solving a
combinatorial optimization problem over ŷ ∈ Y , can be computed efficiently. We give details below.

Reduced low-rank decomposition for LF1 for sparse label space Y , and reduced vector function
f̂ . Let YK = {y ∈ {0, 1}s : ∥y∥1 ≤ K}. For Y ⊆ YK (as is the case under the STSN model), in the
decomposition of LF1 in Example 2, several entries of matrix A become 0; in particular, ajk,y = 0
for k > K. Therefore, the factorization in this case simplifies to

ℓF1

y,ŷ = 1− 1(∥y∥1 = 0) · 1(∥ŷ∥1 = 0)−
s∑
j=1

K∑
k=1

1(∥y∥1 = k) · yj ·
2 · ŷj

k + ∥ŷ∥1
. (29)

In other words, we have LF1 = (Ared)⊤(Bred) + 1t⊤ where Ared ∈ [0, 1](sK+1)×|Y| with ared
0,y =

a0,y = 1(∥y∥1 = 0) and ared
jk,y = ajk,y = 1(∥y∥1 = k) · yj ∀j ∈ [s],∀k ∈ [K], Bred ∈

R(sK+1)×|Y| with bred
0,ŷ = b0,ŷ = −1(∥ŷ∥1 = 0) and bred

jk,ŷ = bjk,ŷ = − 2·ŷj
k+∥ŷ∥1

∀j ∈ [s],∀k ∈ [K],

and t ∈ R|Y| with tŷ = 1. Accordingly, the NCEFP algorithm in this case reduces to solving one
binary problem and s ((K + 1)-class) multiclass problems. The NCOC algorithm requires solving
(sK + 1) binary problems. Therefore, in both cases, one needs to learn only a (sK + 1)-dimensional
real-valued vector function f̂ : X→RsK+1; vector predictions f̂(x) then need to be mapped to
the label space Y to obtain the final multi-label predictions ĥ(x) ∈ Y . The output mappings for
F1-measure below therefore map vectors u ∈ RsK+1 to multi-label predictions ŷ ∈ Y .

NCEFP output mapping for F1-measure under STSN. Algorithm 5 specifies the output mapping
f̂(x) 7→ ĥ(x) in this case. The complexity for computing T is O(sK2). The complexity for the for
loop is O(sK2). So the total complexity of the output mapping is O(sK2). (The procedure here is a
modification of the procedure described in [6, 49] for the case when Y = {0, 1}s. The complexity
of the original output mapping in that case is O(s3); therefore, our complexity of O(sK2) is an
improvement under the STSN setting.)

Algorithm 5 NCEFP output mapping for F1-measure under STSN

1: Input: Vector u =
(
u0, (ujk)j=1,...,s,k=1,...,K

)⊤ ∈ RsK+1

2: Define matrices Q ∈ [0, 1]s×K and V ∈ RK×K as follows:

Qj,k = s(ãmax − ãmin)(γ
−1
mlog(uj1, ..., ujs))k + ãmin

Vk,l =
−2

k + l

3: Compute T = QV
4: For l = 1 . . .K: // K is the number of groups
5: For each group Gk, define glk = argminj∈Gk

{Tj,l}
6: Find the l smallest numbers among {Tgl1,l, ..., TglK ,l}; call them Tjl1,l, . . . , Tjll ,l
7: Define ŷl,∗ ∈ Y ∩ {y ∈ {0, 1}s : ∥y∥1 = l} as follows:

ŷl,∗j =

{
1 if j ∈ {jl1, . . . , jll}
0 otherwise.

8: Set z∗l =
∑s
j=1 ŷ

l,∗
j Tj,l

9: End for
10: Pick ŷ∗ as follows:

ŷ∗ ∈ argmin
ŷ∈{0, ŷ1,∗,..., ŷK,∗}

− 1(ŷ = 0) · ((ãmax − ãmin)γ
−1
log(u0) + ãmin) + 1(ŷ ̸= 0) · z∗∥ŷ∥1

11: Output: ŷ∗ ∈ Y
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NCOC output mapping for Hamming loss under STSN. Algorithm 6 specifies the output mapping
f̂(x) 7→ ĥ(x) in this case. The total complexity is O(s).

Algorithm 6 NCOC output mapping for Hamming loss under STSN

1: Input: Vector u ∈ Rs
2: Define ŷ ∈ {0, 1}s as follows:

ŷj =

{
1 if (ãmax − ãmin)γ

−1
log(uj) + ãmin >

1
2

0 otherwise.

3: For k = 1 . . .K: // K is the number of groups
4: if ∥ŷGk

∥1 > 1:
5: Set ŷj = 0 for all j ∈ Gk
6: Define jk = argmaxj∈Gk

(ãmax − ãmin)γ
−1
log(uj) + ãmin, and set ŷjk = 1

7: End if
8: End for
9: Output: ŷ ∈ Y

NCOC output mapping for F1-measure under STSN. Algorithm 7 specifies the output mapping
f̂(x) 7→ ĥ(x) in this case (Algorithm 7 differs from Algorithm 5 in line 2.). The complexity for
computing T is O(sK2). The complexity for the for loop is O(sK2). So the total complexity of
the output mapping is O(sK2). (The procedure here is a modification of the procedure described in
[6, 49] for the case when Y = {0, 1}s. The complexity of the original output mapping in that case is
O(s3); therefore, our complexity of O(sK2) is an improvement under the STSN setting.)

Algorithm 7 NCOC output mapping for F1-measure under STSN

1: Input: Vector u =
(
u0, (ujk)j=1,...,s,k=1,...,K

)⊤ ∈ RsK+1

2: Define matrices Q ∈ [0, 1]s×K and V ∈ RK×K as follows:

Qj,k = (ãmax − ãmin)γ
−1
log(ujk) + ãmin

Vk,l =
−2

k + l

3: Compute T = QV
4: For l = 1 . . .K: // K is the number of groups
5: For each group Gk, define glk = argminj∈Gk

{Tj,l}
6: Find the l smallest numbers among {Tgl1,l, ..., TglK ,l}; call them Tjl1,l, . . . , Tjll ,l
7: Define ŷl,∗ ∈ Y ∩ {y ∈ {0, 1}s : ∥y∥1 = l} as follows:

ŷl,∗j =

{
1 if j ∈ {jl1, . . . , jll}
0 otherwise.

8: Set z∗l =
∑s
j=1 ŷ

l,∗
j Tj,l

9: End for
10: Pick ŷ∗ as follows:

ŷ∗ ∈ argmin
ŷ∈{0, ŷ1,∗,..., ŷK,∗}

− 1(ŷ = 0) · ((ãmax − ãmin)γ
−1
log(u0) + ãmin) + 1(ŷ ̸= 0) · z∗∥ŷ∥1

11: Output: ŷ∗ ∈ Y

Estimation of STSN parameters. We aim to estimate the K noise parameters in the STSN model,
σk ∈ [0, 1] for k ∈ [K], by exploiting anchor points. In multiclass classification, an instance is
an anchor point if it belongs to a class with probability 1 under the clean distribution D. Under
the assumption that anchor points exist, several algorithms have been proposed to estimate noise
parameters in the multiclass CCN model [19, 27, 45, 48]. Here, we show how to estimate noise
parameters in the STSN model by exploiting anchor points. We start with some notations that will
facilitate the description of our method. Let e1, ..., es ∈ {0, 1}s be the standard basis vectors in
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Rs, and 0 be the zero vector. For group Gk in the STSN model, let ejGk
∈ {0, 1}|Gk| denote the

sub-vector of ej restricted to tags in Gk. Then, we define anchor points in the STSN model as
follows.
Definition 9 (Anchor points). Let D = (µ,η) be the clean distribution, where µ(x) is the marginal
density of x and η(x) is the multi-label class probabilities of x. Suppose tag j belongs to group Gk
in the STSN model. Then, an instance x̄j ∈ X is called an anchor point of tag j if µ(x̄j) > 0 and

Py∼η(x̄j)(yGk
= ejGk

) = 1 . (30)

Under the assumption that there exists at least one anchor point for group Gk, we can estimate σk as
follows. Suppose tag j belongs to group Gk in the STSN model and x̄j ∈ X is an anchor point of tag
j.

When |Gk| = 1, by the description of STSN, we have
Pỹ∼η̃(x̄j)(ỹj = 1) = Py∼η(x̄j)(yj = 1) · (1− σk) + (1−Py∼η(x̄j)(yj = 1)) · σk

= 1− σk . (31)
Therefore, σk = 1−Pỹ∼η̃(x̄j)(ỹj = 1), where Pỹ∼η̃(x̄j)(ỹj = 1) can be estimated from the noisy
training sample.

When |Gk| ≥ 2, we similarly have

Pỹ∼η̃(x̄j)(ỹGk
= ejGk

) = Py∼η(x̄j)(yGk
= ejGk

) · (1− σk)+∑
i∈Gk,i̸=j

Py∼η(x̄j)(yGk
= eiGk

) · σk
|Gk| − 1

= 1− σk . (32)

Again, σk = 1−Pỹ∼η̃(x̄j)(ỹGk
= ejGk

), where Pỹ∼η̃(x̄j)(ỹGk
= ejGk

) can be estimated from the
noisy training sample.

Finally, we note that if anchor points are not available, they can be learned from the noisy training
sample as well [19, 27, 41, 45, 48].
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D Supplement to Section 7

D.1 Synthetic data: data generating process for F1-measure under STSN

We generated a multi-label dataset with instances x in X = R100 and s = 10 tags with K = 5 groups
G = {{1, 2, 3}, {4, 5, 6}, {7, 8}, {9}, {10}}, so |Y| = 192 and ∥y∥1 ≤ K = 5 for all y ∈ Y . By
the reduced factorization of LF1 in Eq. (29) in Appendix C, in this case, Ared ∈ [0, 1](sK+1)×|Y| =
[0, 1]51×192 consists of:

ared
0,y = 1(∥y∥1 = 0) ; ared

jk,y = 1(∥y∥1 = k) · yj ∀j ∈ [s], ∀k ∈ [K] .

We first fixed matrix W ∈ [0.1, 1]51×100 with entries drawn uniformly; we checked that W has full
row rank. We also fixed a vector α ∈ [0.01, 0.02]192 with entries drawn uniformly. To generate a data
point (x,y), we then did the following: we first sampled η(x) ∈ ∆192 ≡ ∆|Y| from Dirichlet(α).
We set q(x) = Aredη(x) ∈ [0, 1]51. We then took x = W†q(x), and drew y ∼ η(x), where W†

denotes the pseudo-inverse of W.

D.2 Synthetic data: Hamming loss under IFN
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Figure 4: Sample complexity behavior of NCPLUG, NCOC-Ham, NCOC-Ham-IFN, and CCMN on
synthetic multi-label data for 3 pairs of noise parameters under the IFN model. Performance measure
is Hamming loss. For NCPLUG, NCOC-Ham and NCOC-Ham-IFN algorithms, as the overall noise
increases, the sample size needed to reach a given level of performance generally increases.

We tested the sample complexity behavior of the NCPLUG algorithm, the NCOC-Ham algorithm,
the NCOC-Ham-IFN algorithm, and the CCMN algorithm [44].

Specifically, we generated a multi-label dataset with instances x in X = R100 and s = 8. Here,
Y = {0, 1}8. By the factorization of LHam in Eq. (3), in this case, A ∈ [0, 1]s×2s = [0, 1]8×256.
We first fixed matrix W ∈ [0.1, 1]8×100 with entries drawn uniformly; we checked that W has full
row rank. Since labels y in real data tend to be very sparse (have few active tags), we simulated
this observation by considering a subset of Y , denoted by Y4, that contains labels y with ∥y∥1 ≤ 4,
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so Y4 = {y ∈ Y : ∥y∥1 ≤ 4}. Then we fixed a vector α ∈ [0.01, 0.02]|Y4| with entries drawn
uniformly. To generate a data point (x,y), we first sampled η̄(x) ∈ ∆|Y4| from Dirichlet(α). Then
we set η(x) ∈ ∆2s ≡ ∆|Y| as follows: for y ∈ Y , if y ∈ Y4, set the y-indexed entry of η(x) to be
the value in the y-indexed entry of η̄(x); if y /∈ Y4, then set the y-indexed entry of η(x) to be a
small value 10−3. Afterwards, we re-normalized η(x). We set q(x) = Aη(x) ∈ [0, 1]8. We then
took x = W†q(x), and drew y ∼ η(x), where W† denotes the pseudo-inverse of W.

We then added label noise using 3 sets of IFN noise rates: specifically, we let c(j)1,0 = c1,0 and

c
(j)
0,1 = c0,1 for all j, and chose 3 pairs of values of (c0,1, c1,0): (0.1, 0.05), (0.15, 0.2), (0.3, 0.3). We

ran all algorithms (with a linear function class) to learn multi-label classifiers from increasingly large
noisy training samples generated in this way, and measured the Hamming loss on a test set of 10, 000
clean data points. The results are shown in Figure 4. We see that, as suggested by our regret bounds,
as the overall noise increases, the sample size needed to reach a given level of performance generally
increases.

D.3 Synthetic data: additional implementation details

For all synthetic data experiments (and for all algorithms in the experiments), we used the Adam
optimizer [15] provided by PyTorch [25] with batch size 100 and no weight decay. The optimizer
was run for 50 epochs over the training sample; the learning rate parameter was initially set to 0.01
and was halved at the end of every 5 epochs.

D.4 Synthetic data: computer resources and computation time

We ran all experiments on a desktop with one AMD Threadripper 3960X CPU, two NVIDIA RTX
3090 GPUs, 64GB RAM, and 1TB SSD.

Computation times for F1-measure experiments under STSN.

Table 4: Approximate computation times for F1-measure experiments under STSN.

NCOC-F1 NCEFP
Training time on 20,000 examples 11 s 67 s
Total time to run all experiments to generate the plot in Figure 2 30 min 140 min

Computation times for Hamming loss experiments under IFN.

Table 5: Approximate computation times for Hamming loss experiments under IFN.

NCPLUG NCOC-Ham NCOC-Ham-IFN CCMN
Training time on 10,000 examples 5 s 5 s 5 s 30 s
Total time to run all experiments
to generate the plot in Figure 4 15 min 15 min 15 min 40 min

D.5 Real data: additional implementation details for experiments on Mediamill data

Regularization parameters were chosen by cross-validation from {0, 10−3, 10−2, 10−1, 1}. We used
the Adam optimizer provided by PyTorch with batch size 100. The optimizer was run for 50 epochs
over the training sample; the learning rate parameter was initially set to 0.01 and was halved at the
end of every 5 epochs.

D.6 Real data: experiments on Multi-MNIST data

Here we report results for the Multi-MNIST dataset (which was also used in [44]).3

Multi-MNIST dataset. We started with the TripleMNIST dataset (each image contains 3 digits; see
Figure 5) in the Multi-MNIST repository and applied the following data processing steps.

3https://github.com/shaohua0116/MultiDigitMNIST, MIT License.
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Figure 5: Examples in TripleMNIST. Pictures were taken from https://github.com/
shaohua0116/MultiDigitMNIST.

The original TripleMNIST has 1,000 images for each of 1,000 classes (000, 001, ..., 999), with
feature dimension 84× 84 = 7, 056. We sampled 100 images for each class. For each instance x, we
created a label vector y ∈ {0, 1}10 in which yj = 1 if digit j − 1 is present in x, and 0 otherwise.
Motivated by the noise model in [27], we divided the 10 tags into 5 groups: { {2, 7, 1}, {5, 6}, {3,
8}, {0, 9}, {4} }. For consistency with the STSN model assumption, we removed instances that have
more than one active tag in any group. We did not change the features in this process. Our modified
Multi-MNIST dataset has 68,800 examples with 10 tags. Since the original data did not come with
prescribed train/test splits, we split the data into training and test sets with ratio 8 : 2. So we ended
up with 55,040 training examples and 13,760 test examples.

Hamming loss under IFN. For IFN, we let c(j)1,0 = c1,0 and c(j)0,1 = c0,1 for all j, and chose noise
parameters of the form (c0,1, c1,0). We compared our NCPLUG and NCOC-Ham-IFN algorithms
with CCMN [44] and basic OC-Ham/BR [46]. We chose the following neural network architecture
for all algorithms:4

model = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d ( 1 , 32 , 3 , padd ing = 1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( 2 , 2 ) ,
t o r c h . nn . Conv2d ( 3 2 , 64 , 3 , padd ing = 1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( 2 , 2 ) ,
t o r c h . nn . Conv2d ( 6 4 , 128 , 3 , padd ing = 1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( 2 , 2 ) ,
t o r c h . nn . F l a t t e n ( ) ,
t o r c h . nn . L a z y L i n e a r ( 1 2 8 ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L a z y L i n e a r ( o u t p u t _ d i m )

)

The results are shown in Table 6. As seen, our NCPLUG and NCOC-Ham-IFN algorithms often
outperform other baselines.

Hamming loss and F1-measure under STSN. For STSN model, we used single-parameter noise
matrices respecting the partition into K = 5 groups described above, with σ1, ..., σ5 = σ. We
compared our NCOC-Ham algorithm with basic OC-Ham/BR [46], as well as our NCOC-F1 and
NCEFP algorithms with basic OC-F1 [49] and EFP [5].

4We used the Adagrad optimizer [8] provided by PyTorch with batch size 128 and weight decay 0.001. The
optimizer was run for 50 epochs over the training sample; the learning rate parameter was initially set to 0.01
and was tuned automatically by the optimizer.
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Table 6: Hamming loss on (modified) Multi-MNIST data with IFN model (lower values are better).
Performance values are in %, and are reported as Mean±SEM over five random trials. Noise level is
1
m

∑m
i=1 1(yi ̸= ỹi).

Noise Noise NCPLUG NCOC-Ham-IFN CCMN OC-Ham/BRparameter (c0,1, c1,0) level (%)
(0.1,0.2) 74.18 6.74±0.08 6.8±0.09 9.9±0.31 6.87±0.14
(0.15,0.4) 91.89 12.82±0.29 12.72±0.44 16.04±0.65 14.17±0.26
(0.25,0.45) 97.43 20.01±0.24 20.36±0.17 21.92±0.7 18.01±0.18

For Hamming loss under STSN, we chose the following neural network architecture for all algo-
rithms:5

model = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d ( 1 , 32 , 3 , padd ing = 1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( 2 , 2 ) ,
t o r c h . nn . Conv2d ( 3 2 , 64 , 3 , padd ing = 1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( 2 , 2 ) ,
t o r c h . nn . Conv2d ( 6 4 , 128 , 3 , padd ing = 1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( 2 , 2 ) ,
t o r c h . nn . F l a t t e n ( ) ,
t o r c h . nn . L a z y L i n e a r ( 1 2 8 ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L a z y L i n e a r ( o u t p u t _ d i m )

)

The results are shown in Table 7. As seen, our noise-corrected algorithm often outperforms the other
baseline.

Table 7: Hamming loss on (modified) Multi-MNIST data with STSN model (lower values are better).
Performance values are in %, and are reported as Mean±SEM over five random trials. Noise level is
1
m

∑m
i=1 1(yi ̸= ỹi).

Noise Noise NCOC-Ham OC-Ham/BRparameter (σ) level (%)
0.1 28.96 4.83±0.13 6.13±0.22
0.2 51.11 9.11±0.75 10.28±0.54
0.3 68.14 16.9±1.21 16.21±0.35
0.4 80.23 28.06±1.45 22.5±0.21
0.6 94.29 27.38±1.62 34.19±0.05

For F1-measure under STSN, we chose the following neural network architecture for all algorithms:6

model = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d ( 1 , 32 , 3 , padd ing = 1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( 2 , 2 ) ,
t o r c h . nn . Conv2d ( 3 2 , 64 , 3 , padd ing = 1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( 2 , 2 ) ,

5We used the Adagrad optimizer provided by PyTorch with batch size 128 and weight decay 0. The optimizer
was run for 50 epochs over the training sample; the learning rate parameter was initially set to 0.01 and was
tuned automatically by the optimizer.

6We used the Adagrad optimizer provided by PyTorch with batch size 128 and weight decay 0. The optimizer
was run for 50 epochs over the training sample; the learning rate parameter was initially set to 0.01 and was
tuned automatically by the optimizer.
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t o r c h . nn . Conv2d ( 6 4 , 128 , 3 , padd ing = 1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( 2 , 2 ) ,
t o r c h . nn . F l a t t e n ( ) ,
t o r c h . nn . L a z y L i n e a r ( 5 1 2 ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L a z y L i n e a r ( o u t p u t _ d i m )

)

The results are shown in Table 8. Again, our noise-corrected algorithms often outperform other
baselines.

Table 8: F1-measure on (modified) Multi-MNIST data with STSN model (higher values are better).
Performance values are in %, and are reported as Mean±SEM over five random trials. Noise level is
1
m

∑m
i=1 1(yi ̸= ỹi).

Noise Noise NCEFP NCOC-F1 EFP OC-F1parameter (σ) level (%)
0.1 28.96 91.14±0.16 90.13±0.18 83.77±0.24 78.33±0.37
0.2 51.11 84.98±1.24 84.95±0.52 74.16±0.23 69.61±0.35
0.3 68.14 73.55±1.47 75.74±0.35 64.61±0.77 60.71±0.6
0.4 80.23 53.64±0.81 51.48±1.83 53.87±0.6 50.97±0.79
0.6 94.29 43.82±1.72 41.93±2.02 31.82±0.24 32.57±0.47

D.7 Real data: computer resources and computation time

We ran all experiments on a desktop with one AMD Threadripper 3960X CPU, two NVIDIA RTX
3090 GPUs, 64GB RAM, and 1TB SSD.

Computation times for experiments on Mediamill dataset. See Table 9, Table 10, and Table 11
for computation time of experiments for Hamming loss with IFN model, Hamming loss with STSN
model, and F1-measure with STSN model, respectively.

Computation times for experiments on Multi-MNIST dataset. See Table 12, Table 13, and Table
14 for computation time of experiments for Hamming loss with IFN model, Hamming loss with
STSN model, and F1-measure with STSN model, respectively.
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Table 9: Approximate computation time of experiments for Hamming loss on (modified) Mediamill
data with IFN model. (CV = cross validation)

NCPLUG NCOC-Ham-IFN CCMN OC-Ham/BR
Training time over full training set (w/o CV) 10 s 10 s 106 s 10 s
Training time over full training set (w/ CV) 59 s 58 s 602 s 58 s
Inference time over full test set < 0.1 s < 0.1 s < 0.1 s < 0.1 s

Table 10: Approximate computation time of experiments for Hamming loss on (modified) Mediamill
data with STSN model. (CV = cross validation)

NCOC-Ham OC-Ham/BR
Training time over full training set (w/o CV) 10 s 10 s
Training time over full training set (w/ CV) 60 s 57 s
Inference time over full test set 0.4 s 0.4 s

Table 11: Approximate computation time of experiments for F1-measure on (modified) Mediamill
data with STSN model. (CV = cross validation)

NCEFP NCOC-F1 EFP OC-F1

Training time over full training set (w/o CV) 73 s 10 s 96 s 10 s
Training time over full training set (w/ CV) 451 s 63 s 533 s 61 s
Inference time over full test set 5.3 s 2.6 s 5.3 s 2.1 s

Table 12: Approximate computation time of experiments for Hamming loss on (modified) Multi-
MNIST data with IFN model.

NCPLUG NCOC-Ham-IFN CCMN OC-Ham/BR
Training time over full training set 171 s 171 s 225 s 171 s
Inference time over full test set 0.5 s 0.5 s 0.5 s 0.5 s

Table 13: Approximate computation time of experiments for Hamming loss on (modified) Multi-
MNIST data with STSN model.

NCOC-Ham OC-Ham/BR
Training time over full training set 170 s 167 s
Inference time over full test set 0.9 s 0.9 s

Table 14: Approximate computation time of experiments for F1-measure on (modified) Multi-MNIST
data with STSN model.

NCEFP NCOC-F1 EFP OC-F1

Training time over full training set 254 s 181 s 250 s 177 s
Inference time over full test set 5.8 s 2.7 s 5.7 s 2.6 s
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E Broader impacts

Our efforts are centered around fundamental research in the broad area of learning from noisy
labels. More specifically, we have developed a number of consistent noise-corrected multi-label
learning algorithms, encompassing a variety of multi-label performance measures and general class-
conditional noise (CCN) models, together with supporting theory and experimental validation. This
work can have the positive broader impact of enabling the learning of more accurate multi-label
classification models from noisy data. We do not foresee any negative broader impact of the work
described here.

F Limitations

Our work proposes three consistent noise-corrected multi-label learning algorithms, encompassing
a variety of multi-label performance measures and general class-conditional noise (CCN) models.
The algorithms do not apply to noise models outside the broad family of CCN models. Of course, in
the multi-label setting, general CCN models are computationally too expensive to work with, and
therefore in practice, one needs to work with suitably structured subclasses of CCN models. Within
the family of CCN models, while our algorithms are consistent for all noise models in the family,
they are computationally efficient when the noise matrix C can be inverted efficiently, as is the case
with the similar-tag switching noise (STSN) models that we have proposed (we have also given
computationally efficient algorithms for the special case of Hamming loss under the independent
flipping noise (IFN) model). One limitation of the STSN model is that it only allows at most one
active tag within each group of similar/related tags. It remains to identify other natural classes of
CCN models for which the noise matrix C can be inverted efficiently, and also to possibly explore the
design of alternative consistent algorithms that could be computationally efficient for other classes of
CCN models.
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