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Abstract

In online ranking, a learning algorithm sequentially ranks a set of items and receives
feedback on its ranking in the form of relevance scores. Since obtaining relevance
scores typically involves human annotation, it is of great interest to consider a
partial feedback setting where feedback is restricted to the top-k items in the
rankings. Chaudhuri and Tewari [2017] developed a framework to analyze online
ranking algorithms with top-k feedback. A key element in their work was the use
of techniques from partial monitoring. In this work, we further investigate online
ranking with top-k feedback and solve some open problems posed by Chaudhuri
and Tewari [2017]. We provide a full characterization of minimax regret rates
with the top-k feedback model for all k and for the following ranking performance
measures: Pairwise Loss, Discounted Cumulative Gain, and Precision@n. In
addition, we give an efficient algorithm that achieves the minimax regret rate for
Precision@n.

1 Introduction

Ranking problems arise in many applications including search engines, recommendation systems,
and online advertising (see, e.g., the book by Liu [2011]). The output space in ranking problems
consists of permutations of objects. Given the true relevance scores of the objects, the accuracy of a
ranked list is judged using ranking measures, such as Pairwise Loss (PL), Discounted Cumulative
Gain (DCG), and Precision@n (P@n). Many ranking algorithms are offline, i.e., they are designed
to operate on the entire data in a single batch. However, interest in online algorithms, i.e., those
that process the data incrementally, is rising for a number of reasons. First, online algorithms often
require less computation and storage. Second, many applications, especially on the web, produce
ongoing streams of data making them excellent candidates for applying online algorithms. Third,
basic online algorithms, such as the ones developed in this work, make excellent starting points for
developing more sophisticated online algorithms that can deal with non-stationarity. Non-stationarity
is a major issue in ranking problems since user preferences can easily change over time.

The basic full feedback setting assumes that the relevance scores, typically obtained via human
annotation, provide the correct feedback for each item in the ranking. Since the output in ranking
problems is a permutation over a potentially large set of objects, it becomes practically impossible to
get full feedback from human annotators. Therefore, researchers have looked into weak supervision
or partial feedback settings where the correct relevance score is only partially revealed to the learning
algorithm. For example, Chaudhuri and Tewari [2017] developed a model for online ranking with a
particular case of partial feedback called top-k feedback. In this model, the online ranking problem
is cast as an online partial monitoring game between a learner and an oblivious adversary (who
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generates a sequence of outcomes before the game begins), played over T rounds.2 At each round,
the learner outputs a ranking of objects whose quality with respect to the true relevance scores of the
objects, is judged by some ranking measure. However, the learner receives limited feedback at the
end of each round: only the relevance scores of the top-k ranked objects are revealed to the learner.
Here, k ≤ m (in practice k ≪ m) and m is the number of objects.

The goal of the learner is to minimize its regret. The goal of regret analysis is to compute the upper
bounds of the regret of explicit algorithms. If lower bounds on regret that match the upper bounds up
to constants can be derived, then the minimax regret is identified, again up to constants. Previous
work considered two settings: non-contextual (objects to be ranked are fixed) and contextual (objects
to be ranked vary and get encoded as a context, typically in the form of a feature vector). Our focus
in this work will be on the non-contextual setting where six ranking measures have been studied:
PL, DCG, P@n, and their normalized versions Area Under Curve (AUC), Normalized Discounted
Cumulative Gain (NDCG) and Average Precision (AP). Chaudhuri and Tewari [2017] showed that
the minimax regret rates with the top-k feedback model for PL, DCG and P@n are upper bounded by
O(T 2/3) for all 1 ≤ k ≤ m. In particular, for k = 1, the minimax regret rates for PL and DCG are
Θ(T 2/3). Moreover, for k = 1, the minimax regret rates for AUC, NDCG, and AP are Θ(T ). One of
the open questions, as described by Chaudhuri and Tewari [2017], is to find the minimax regret rates
for k > 1 for the six ranking measures.

It is worth noting that the top-k feedback model is neither full feedback (where the adversary’s
move is uniquely determined by the feedback) nor bandit feedback (where the loss is determined
by the feedback); the model falls under the framework of partial monitoring [Cesa-Bianchi et al.,
2006]. Recent advances in classification of finite partial-monitoring games have shown that the
minimax regret of any such game is 0, Θ(T 1/2), Θ(T 2/3), or Ω(T ), and is governed by two important
properties: global observability and local observability [Bartók et al., 2014]. In particular, Bartók et al.
[2014] gave an almost complete classification of all finite partial-monitoring games by identifying
four regimes: trivial, easy, hard, and hopeless games, which correspond to the four minimax regret
rates mentioned before, respectively. What was left from the classification is the set of games in
oblivious adversarial settings with degenerate actions which are never optimal themselves, but can
provide useful information. Lattimore and Szepesvári [2019a,b] finished the characterization of the
minimax regret for all partial monitoring games.

Our contributions: We establish the minimax regret rates for all values of k, i.e., 1 ≤ k ≤ m and
for ranking measures PL, DCG, and P@n. We obtain these results by showing that the properties of
global observability and local observability hold in the appropriate cases. In addition, we provide an
algorithm based on the NEIGHBORHOODWATCH2 algorithm of Lattimore and Szepesvári [2019a].
Our algorithm achieves the minimax rate for P@n and has per-round time complexity polynomial in
m (for any fixed n).

2 Notations and Problem Setup

We defer all proofs to the appendix.

Our problem formulation follows that of Chaudhuri and Tewari [2017]. Let {ei} denote the standard
basis. Let 1 denote the vector of all ones. The fixed m objects to be ranked are [m] := {1, ...,m}.
The permutation σ maps from ranks to objects, and its inverse σ−1 maps from objects to ranks.
Specifically, σ(i) = j means that object j is ranked i and σ−1(i) = j means that object i is ranked j.
The relevance vector R ∈ {0, 1}m represents relevance for each object. R(i), i-th component of R,
is the relevance for object i. Sometimes, relevance values can be multi-graded, i.e., can take values
other than 0 or 1. However, in this work, we only study binary relevance.

The learner can choose from m! actions {σ | σ : [m] → [m] is bijective} while the adversary can
choose from 2m outcomes {0, 1}m. We use subscript t exclusively to denote time t, so σt is the
action the learner chooses at round t and Rt is the outcome the adversary chooses at round t.

In a game G, the learner and the adversary play over T rounds. We consider an oblivious adversary
who chooses all the relevance vectors Rt ahead of the game (but they are not revealed to the learner

2Some other problems that can be cast as partial monitoring games are multi-armed bandits [Auer et al.,
2002], and dynamic pricing [Kleinberg and Leighton, 2003].
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at that point).3 In each round t, the learner predicts a permutation (ranking) σt according to a
(possibly randomized) strategy π. The performance of σt is judged against Rt by some ranking
(loss) measure RL. At the end of round t, only the relevance scores of the top-k ranked objects
(Rt(σt(1)), ..., Rt(σt(k))) are revealed to the learner. Therefore, the learner knows neither Rt (as
in the full information game) nor RL(σt, Rt) (as in the bandit game). The goal of the learner is to
minimize the expected regret (where the expectation is over any randomness in the learner’s moves
σt) defined as the difference in the realized loss and the loss of the best-fixed action in hindsight:

RT (π,R1, ...RT ) := Eσ1,...,σT

[ T∑
t=1

RL(σt, Rt)
]
−min

σ

T∑
t=1

RL(σ,Rt) . (1)

When the ranking measure is a gain, we can negate the gain function so that it becomes a loss function.
The worst-case regret of a learner’s strategy is its maximum regret over all choices of R1, ..., RT .
The minimax regret is the minimum worst-case regret over all strategies of the learner:

R∗
T (G) = inf

π
max

R1,...,RT

RT (π,R1, ...RT ) , (2)

where π is the learner’s strategy to generate σ1, ..., σT .

3 Ranking Measures

We are interested in ranking measures that can be expressed in the form of f(σ) ·R where f : Rm →
Rm, is composed of m copies of a univariate monotonically non-decreasing scalar-valued function
fs : R → R. We say that fs is monotonically non-decreasing if and only if σ−1(i) > σ−1(j) implies
fs(σ−1(i)) ≥ fs(σ−1(j)). The monotonic non-increasing is defined analogously. Then, f(σ) can
be written as

f(σ) = [fs(σ−1(1)), ..., fs(σ−1(m))] .

The definitions of ranking measures that we are going to study in this work are the following.

Pairwise Loss (PL) and Sum Loss (SL)

PL(σ,R) =

m∑
i=1

m∑
j=1

1(σ−1(i) < σ−1(j))1(R(i) < R(j)) . (3)

SL(σ,R) =

m∑
i=1

σ−1(i)R(i) . (4)

It has been shown that the regret under PL is equal to the regret under SL (Section 2 of Ailon [2014]).
Therefore, we can study SL instead of PL. The minimax regret rate for PL is the same as that for SL:

T∑
t=1

PL(σt, Rt)−
T∑

t=1

PL(σ,Rt) =

T∑
t=1

SL(σt, Rt)−
T∑

t=1

SL(σ,Rt) . (5)

Although we cannot express PL in the form of f(σ) ·R, we can do that for SL with f(σ) = σ−1 =
[σ−1(1), ..., σ−1(m)].

Discounted Cumulative Gain (DCG)

DCG(σ,R) =

m∑
i=1

R(i)

log2(1 + σ−1(i))
. (6)

Negated DCG can be expressed in the form of f(σ) ·R with

f(σ) = [− 1

log2(1 + σ−1(1))
, ...,− 1

log2(1 + σ−1(m))
] .

3Note that a stochastic adversary who draws i.i.d. relevance vectors Rt is a special case of an oblivious
adversary.

3



Precision@n Gain (P@n)

P@n(σ,R) =

m∑
i=1

1(σ−1(i) ≤ n)R(i) . (7)

Negated P@n can also be expressed in the form of f(σ) ·R with

f(σ) = [−1(σ−1(1) ≤ n), ...,−1(σ−1(m) ≤ n)] .

Remark 1. There are reasons why we are interested in this linear (in R) form of ranking measures.
The algorithms that establish upper bounds for the minimax regret rates require the construction of
an unbiased estimator of the difference vector between two loss vectors that two different actions
incur [Bartók et al., 2014, Lattimore and Szepesvári, 2019a]. The nonlinear (in R) form of ranking
measures (including AUC, NDCG, and AP) makes such a construction extremely hard (see details in
Chaudhuri and Tewari [2017]).

4 Summary of Results

We first summarize our main results before delving into technical details. We remind the reader
that we assume that the adversary is oblivious and the time horizon is T . We operate under a
non-contextual top-k feedback model with m objects.4

1. The minimax regret rate for PL, SL and DCG is Θ(T 2/3) for k = 1, 2, ...,m − 2 and is
Θ(T 1/2) for k = m− 1,m.

2. The minimax regret rate for P@n is Θ(T 1/2) for 1 ≤ k ≤ m.
3. The minimax regret rate for P@n can be achieved by an efficient algorithm that needs only

O(poly(m)) rounds and has per-round time complexity O(poly(m)).

5 Finite Partial Monitoring Games

Our results on minimax regret rates are developed based on the theory for general finite partial
monitoring games developed by Bartók et al. [2014], Lattimore and Szepesvári [2019a,b]. Before
presenting our results, it is necessary to reproduce the relevant definitions and notations as in Bartók
et al. [2014], Chaudhuri and Tewari [2017], and Lattimore and Szepesvári [2019a]. For the sake of
easy understanding, we adapt the definitions and notation to our setting.

5.1 A Quick Review of Finite Partial Monitoring Games

Recall that in the top-k feedback model, there are m! actions and 2m outcomes (because we only
consider binary relevance). Without loss of generality, we fix an ordering (σi)1≤i≤m! of all the
actions and an ordering (Rj)1≤j≤2m of all the outcomes. Note that the subscripts in σi and Rj refer
to the place in these fixed ordering and do not refer to time points in the game as in σt. It will be clear
from the context whether we are referring to a place in the ordering or to a time point in the game. A
game with ranking measure RL and top k (1 ≤ k ≤ m) feedback can be defined by a pair of loss
matrix and feedback matrix. The loss matrix is denoted by L ∈ Rm!×2m with rows corresponding
to actions and columns corresponding to outcomes. Li,j is the loss the learner suffers when the
learner chooses action σi, and the adversary chooses outcome Rj , i.e., Li,j = RL(σi, Rj). The
feedback matrix is denoted by H of size m!× 2m with rows corresponding to actions and columns
corresponding to outcomes. Hi,j is the feedback the learner gets when the learner chooses action σi,
and the adversary chooses outcome Rj , i.e., Hi,j = (Rj(σi(1)), ..., Rj(σi(k))).

Loss matrix L and feedback matrix H together determine the difficulty of a game. In the following,
we will introduce some definitions to help understand the underlying structures of L and H .

Let li denote the column vector consisting of the i-th row of L. It is also called the loss vector for
action i. Let ∆ be the probability simplex in R2m , that is, ∆ = {p ∈ R2m : p ≥ 0,1⊤p = 1} where
the inequality between vector is to be interpreted component-wise. Elements of ∆ can be treated as

4‘Non-contextual’ means that there is no side information/features/context associated with the m objects
being ranked.
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opponent strategies as they are distributions of overall outcomes. With loss vectors and ∆, we can
then define what it means for a learner’s action to be optimal.
Definition 1 (Optimal action). Learner’s action σi is said to be optimal under p ∈ ∆ if li · p ≤ lj · p
for all 1 ≤ j ≤ m!. That is, σi has an expected loss not greater than that of any other learner’s
actions under p.

Identifying opponent strategies under which an action is optimal gives the cell decomposition of ∆.
Definition 2 (Cell decomposition). For learner’s action σi, 1 ≤ i ≤ m!, its cell is defined to be
Ci = {p ∈ ∆ : li · p ≤ lj · p,∀1 ≤ j ≤ m!}. Then {C1, ..., Cm!} forms the cell decomposition of ∆.

It is easy to see that each cell is either empty or is a closed polytope. Based on the properties of
different cells, we can classify corresponding actions as follows.
Definition 3 (Classification of actions). Action σi is called dominated if Ci = ∅. Action σi is called
nondominated if Ci ̸= ∅. Action σi is called degenerate if it is nondominated and there exists action
σj such that Ci ⊊ Cj . Action σi is called Pareto-optimal if it is nondominated and not degenerate.

Dominated actions are never optimal. Cells of Pareto-optimal actions have (2m − 1) dimensions,
while those of degenerate actions have dimensions strictly less than (2m − 1).

Sometimes two actions might have the same loss vector, and we will call them duplicate actions.
Formally, action σi is called duplicate if there exists action σj ̸= σi such that li = lj . If actions
σi and σj are duplicates of each other, one might think of removing one of them without loss of
generality. Unfortunately, this will not work. Even though σi and σj have the same loss vector, they
might have different feedback. Thus removing one of them might lead to a loss of information that
the learner could have received.

Next, we introduce the concept of neighbors defined in terms of Pareto-optimal actions.
Definition 4 (Neighbors). Two Pareto-optimal actions σi and σj are neighboring actions if Ci ∩ Cj

has dimension (2m − 2). The neighborhood action set of two neighboring actions σi and σj is
defined as N+

i,j = {k′ : 1 ≤ k′ ≤ m!, Ci ∩ Cj ⊆ Ck′}.

All of the definitions above are with respect to the loss matrix L. The structure of L (i.e., the number
of each type of actions) certainly plays an important role in determining the difficulty of a game. (For
example, if a game has only one Pareto-optimal action, then simply playing the Pareto-optimal action
in each round leads to zero regret.) However, that is only half of the story. In the other half, we will
see the feedback matrix H determines how easily we can identify optimal actions.

In the following, we will turn our attention to the feedback matrix H . Recall that Hi,j is the feedback
the learner gets when the learner plays action σi, and the adversary plays outcome Rj . Consider the
i-th row of H , which is all possible feedback the learner could receive when playing action i. We
want to infer what outcome the adversary chose from the feedback. Thus, the feedback itself does not
matter; what matters is the number of distinct symbols in the i-th row of H . This will determine how
easily we can differentiate among outcomes. Therefore, we will use signal matrices to standardize
the feedback matrix H .
Definition 5 (Signal matrix). Recall that in top-k feedback model, the feedback matrix has 2k

distinct symbols {0, 1}k. Fix an enumeration s1, ..., s2k of these symbols. Then the signal matrix
Si ∈ {0, 1}2k×2m , corresponding to action σi, is defined as (Si)l,l′ = 1(Hi,l′ = sl).

At this point, one might attempt to construct unbiased estimators for loss vectors for all actions and
then apply algorithms like Exp3 [Auer et al., 2000]. Unfortunately, this approach will not work in this
setting. There are easy counterexamples (see Exhibit 1 in Appendix H of Lattimore and Szepesvári
[2019a]). Another approach is to construct unbiased estimators for differences between loss vectors.
The idea is that we do not need to estimate the loss itself; instead, it suffices to estimate how an action
performs with respect to the optimal action in order to control the regret. It turns out this idea indeed
works. The following two definitions capture the difficulty with which we can construct an unbiased
estimator for loss vector difference.
Definition 6 (Global observability). A pair of actions σi and σj is called globally observable if
li − lj ∈ ⊕1≤k′≤m! Col(S⊤

k′), where Col refers to column space. The global observability condition
holds if every pair of neighboring actions is globally observable.
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Definition 7 (Local observability). A pair of neighboring actions σi and σj is called locally ob-
servable if li − lj ∈ ⊕k′∈N+

i,j
Col(S⊤

k′). The local observability condition holds if every pair of
neighboring actions is locally observable.

Global observability means that the loss vector difference can be estimated using feedback from
all actions, while local observability means that it can be estimated using just feedback from the
neighborhood action set. Clearly, local observability is a stronger condition, and it implies global
observability.

We note that the above two definitions are given in Bartók et al. [2014]. Later, when Lattimore and
Szepesvári [2019a] extended Bartók et al. [2014]’s work, they proposed different (but equivalent)
definitions of global observability and local observability. We reproduce as follows.

Definition 8 (Alternative definitions of global observability and local observability). Let Σ = {σ |
σ : [m] → [m]is bijective}. Let H denote the set of symbols in H . A pair of actions σi and σj is
called globally observable if there exists a function f : Σ×H → R such that

m!∑
k′=1

f(σk′ , Hk′,l′) = Li,l′ − Lj,l′ for all 1 ≤ l′ ≤ 2m .

A pair of actions σi and σj are locally observable if in addition to the above they are neighbors
and f(σk′ , ·) = 0 when k′ /∈ N+

i,j . Again, the global observability condition holds if every pair of
neighboring actions is globally observable, and the local observability condition holds if every pair
of neighboring actions is locally observable.

Lemma 1. The alternative definitions of global observability and local observability (Definition 8)
are equivalent to the original definitions of global observability and local observability (Definition 6
and Definition 7), respectively.

To explain intuitively, note that σk′ and Hk′,l′ contain the same information as Sk′ and el′ because
observing Hk′,l′ is equivalent to observing Sk′el′ . The latter can be seen as a one-hot coding vector
for the feedback. Since the two sets of definitions are equivalent, we choose to use the one that is
more convenient in the context.

5.2 Classification Theorem for Finite Partial Monitoring Games

To make this work self-contained, we will state the important result that we use from the theory of
finite partial monitoring games. The following theorem provides a full classification of all finite
partial monitoring games into four categories.

Theorem 2. [Theorem 2 in Bartók et al. [2014], Theorem 2 in Lattimore and Szepesvári [2019a],
and Theorem 9 in Lattimore and Szepesvári [2019b]] The minimax regret rate of partial monitoring
game G = (L,H) satisfies

R∗
T (G) =


0, if G has no pairs of neighboring actions;
Θ(T 1/2), if G is locally observable and has neighboring actions;
Θ(T 2/3), if G is globally observable, but not locally observable;
Ω(T ), otherwise.

This theorem involves upper and lower bounds for each of the four categories. Several papers
[Piccolboni and Schindelhauer, 2001, Antos et al., 2013, Cesa-Bianchi et al., 2006, Bartók et al.,
2014, Lattimore and Szepesvári, 2019a,b] contribute to this theorem. In particular, Bartók et al.
[2014] summarizes and gives a nearly complete classification theorem. However, they failed to deal
with degenerate games (i.e., the game that has degenerate or duplicate actions). This is important for
us since, as we shall see later, the game for P@n contains duplicate actions. Fortunately, Lattimore
and Szepesvári [2019a] filled this gap in the literature. Later, Lattimore and Szepesvári [2019b]
eliminated the logarithmic dependence on T for locally observable games that appeared in earlier
work.

Intuitively, a game is ‘trivial’ (zero regret) if no learning is needed. This only happens when there
is one Pareto-optimal action or all Pareto-optimal actions are duplicates. A game is ‘easy’ (T 1/2

regret) if a learner needs to play an action with a small price in order to gain information (for loss
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vector difference estimation). A game is ‘hard’ (T 2/3 regret) if a learner needs to play an action with
a heavy price in order to gain information. A game is ‘hopeless’ (linear regret) if no information can
be obtained to determine optimal actions (for example, two actions with the same feedback).

With this classification theorem, it suffices for us to show the local or global observability conditions
in order to establish minimax regret rates.

6 Minimax Regret Rates for PL, SL and DCG

We first show the minimax regret rate for a family of ranking loss measures that satisfy the following
assumption.

Assumption 1 (Strict increasing property). The ranking loss measure RL(σ,R) can be expressed in
the form f(σ) ·R where f : Rm → Rm, is composed of m copies of a univariate strictly increasing
scalar-valued function fs : R → R, that is, σ−1(i) > σ−1(j) implies fs(σ−1(i)) > fs(σ−1(j)).

As mentioned in Section 3, SL satisfies Assumption 1 with f(σ) = σ−1 = [σ−1(1), ..., σ−1(m)].
The negated DCG, which is a ranking loss measure, also satisfies Assumption 1 with f(σ) =
[− 1

log2(1+σ−1(1)) , ...,−
1

log2(1+σ−1(m)) ].

In the following, assume the ranking loss measure RL satisfies Assumption 1 unless otherwise stated.
We first identify the classification of actions and their corresponding cell decomposition.

Lemma 3 (Classification of actions for RL satisfying Assumption 1). For RL that satisfies Assump-
tion 1, each of the learner’s actions σi is Pareto-optimal.

Determining whether the game is locally observable requires knowing all neighboring action pairs.
We now characterize neighboring action pairs for RL.

Lemma 4 (Neighboring action pair for RL satisfying Assumption 1). A pair of actions σi and σj is
a neighboring action pair if and only if there is exactly one pair of objects {a, b}, whose positions
differ in σi and σj , such that a is placed just before b in σi, and b is placed just before a in σj .

Remark 2. From Lemma 4, neighboring action pair {σi, σj} has the form: σi(k
′) = a, σi(k

′+1) =
b, σj(k

′) = b, σj(k
′ + 1) = a for some k′, and σi(l) = σj(l),∀l ̸= k′, k′ + 1, for objects a and b.

By properties of RL, we can calculate the Rt entry of li − lj (the entry that corresponds to Rt) as
RL(σi, Rt)−RL(σj , Rt) = Rt · (f(σi)− f(σj)) = Rt(a) · (fs(σ−1

i (a))− fs(σ−1
j (a)))+Rt(b) ·

(fs(σ−1
i (b))−fs(σ−1

j (b))) = Rt(a) · (fs(k′)−fs(k′+1))+Rt(b) · (fs(k′+1)−fs(k′)). We can
see that li − lj contains 2m−1 nonzero entries, of which 2m−2 entries are fs(k′)− fs(k′ + 1) and
2m−2 entries are fs(k′ + 1)− fs(k′). Moreover, if Rt(a) = 1 and Rt(b) = 0 for the Rt relevance,
then the Rt entry of li − lj is fs(k′)− fs(k′ + 1). If Rt(a) = 0 and Rt(b) = 1 for the Rt relevance,
then the Rt entry of li − lj is fs(k′ + 1)− fs(k′). If Rt(a) = Rt(b) for the Rt relevance, then the
Rt entry of li − lj is 0.

Once we know what a neighboring action pair is, we can characterize the corresponding neighborhood
action set.

Lemma 5 (Neighborhood action set for RL satisfying Assumption 1). For neighboring action pair
{σi, σj}, the neighborhood action set is N+

i,j = {i, j}, so ⊕k∈N+
i,j

Col(S⊤
k ) = Col(S⊤

i )⊕ Col(S⊤
j ).

We are now ready to state the first important theorem in this work.

Theorem 6 (Local observability for RL satisfying Assumption 1). Under top-k feedback model with
m objects, with respect to loss matrix L and feedback matrix H for RL satisfying Assumption 1, the
local observability fails for k = 1, ...,m− 2 and holds for k = m− 1,m.

Since SL satisfies Assumption 1, we have the following corollary from Theorem 6.

Corollary 7 (Local observability for SL). With respect to loss matrix L and feedback matrix H for
SL, the local observability fails for k = 1, ...,m− 2 and holds for k = m− 1,m.

Minimax regret rates for SL and PL. Theorem 1 in section 2.4 and the discussion in section
2.5 of Chaudhuri and Tewari [2017] have shown that for SL, the global observability holds for all
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1 ≤ k ≤ m. Combining our Theorem 6 and chaining with Theorem 2, we immediately have the
minimax regret for SL:

R∗
T =

{
Θ(T 2/3), k = 1, ...,m− 2

Θ(T 1/2), k = m− 1,m
.

By Equation (5), PL has exactly the same minimax regret rates as SL.

Discussion. Corollary 7 shows that this game is hard for almost all values of k. In particular, since, in
reality, small values of k are more interesting, it rules out the possibility of better regret for practically
interesting cases for k. We also note that Chaudhuri and Tewari [2017] showed the failure of local
observability only for k = 1.

As for the time complexity, Chaudhuri and Tewari [2017] provided an efficient (polynomial of m
time) algorithm for PL and SL for values of k when global observability holds, so we have an efficient
algorithm for k = 1, 2, ...,m− 2. For k = m, Suehiro et al. [2012] and Ailon [2014] have already
shown efficient algorithms. The only case left out is k = m − 1. Such a large value of k is not
interesting in practice, so we do not pursue this question.

Similarly, since negated DCG also satisfies Assumption 1, we have the following corollary from
Theorem 6.

Corollary 8 (Local observability for DCG). With respect to loss matrix L and feedback matrix H for
DCG, the local observability fails for k = 1, ...,m− 2 and holds for k = m− 1,m.

Minimax regret rate for DCG. Corollary 10 of Chaudhuri and Tewari [2017] showed that for DCG,
the minimax regret rate is O(T 2/3) for 1 ≤ k ≤ m. Combining with our Corollary 8 and chaining
with Theorem 2, we immediately have the minimax regret for DCG:

R∗
T =

{
Θ(T 2/3), k = 1, ...,m− 2

Θ(T 1/2), k = m− 1,m
.

Discussion. Corollary 8 generalizes the results in Chaudhuri and Tewari [2017] that showed local
observability fails only for k = 1, and rules out the possibility of better regret for values of k that
are practically interesting. Also, there are efficient algorithms for k = 1, 2, ...,m − 2 [Chaudhuri
and Tewari, 2017] and for k = m [Suehiro et al., 2012, Ailon, 2014]. Again, we are not interested in
designing an efficient algorithm for k = m− 1.

7 Minimax Regret Rate for P@n

The negated P@n does not satisfy Assumption 1 because fs is not strictly increasing (see Eq. (7)), so
Theorem 6 does not apply to negated P@n.

In the following, the ranking loss measure is negated P@n unless otherwise stated. To establish
a minimax regret rate for P@n, we first need to identify the classification of actions and their
corresponding cell decomposition.

Lemma 9 (Classification of actions for P@n). For negated P@n, each of the learner’s actions σi is
Pareto-optimal.

Next, we characterize neighboring action pairs for negated P@n.

Lemma 10 (Neighboring action pairs for P@n). For negated P@n, a pair of learner’s actions
{σi, σj} is a neighboring action pair if and only if there is exactly one pair of objects {a, b} such
that a ∈ Ai, a ∈ Bj , b ∈ Bi, and b ∈ Aj , where Ai = {a : σ−1

i (a) ≤ n}, Bi = {b : σ−1
i (b) > n},

and Aj and Bj are defined similarly.

Remark 3. From Lemma 10, for neighboring action pair {σi, σj}, we know there is exactly one
pair of objects {a, b} such that a ∈ Ai, a ∈ Bj , b ∈ Bi, and b ∈ Aj , where Ai, Aj , Bi, Bj are
defined as in Lemma 10. Using the definition of negated P@n, we can see that li − lj contains 2m−1

nonzero entries, of which 2m−2 entries are 1 and 2m−2 entries are −1. Moreover, if Rs(a) = 1 and
Rs(b) = 0 for the s-th (1 ≤ s ≤ 2m) relevance, then the s-th entry of li − lj is −1. If Rs(a) = 0 and
Rs(b) = 1 for the s-th (1 ≤ s ≤ 2m) relevance, then the s-th entry of li − lj is 1. If Rs(a) = Rs(b)
for the s-th (1 ≤ s ≤ 2m) relevance, then the s-th entry of li − lj is 0.
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Then, we characterize the neighborhood action set for a neighboring action pair.

Lemma 11 (Neiborhood action set for P@n). For neighboring action pair {σi, σj}, the neighborhood
action set is N+

i,j = {k : 1 ≤ k ≤ m!, lk = li or lk = lj}.

Remark 4. Negated P@n says that it only matters the way of partitioning m objects into 2 sets A
and B as in Lemma 9. For a fixed partition A and B, we can permute objects within A and within
B, and all such permutations give the same loss vector and the same cell. Thus, there are duplicate
actions in P@n, but no degenerate actions.

We are prepared to state the local observability theorem for P@n. The proof uses the same technique
as that in the proof of Theorem 6.

Theorem 12 (Local observability for P@n). For fixed n such that 1 ≤ n ≤ m, with respect to loss
matrix L and feedback matrix H for P@n, the local observability holds for all 1 ≤ k ≤ m.

Minimax regret rate for P@n. Note that this game contains many duplicate actions (but no
degenerate actions) since P@n only cares about objects ranked in the top n position, irrespective
of the order. The minimax regret does not directly follow from Theorem 2 of Bartók et al. [2014].
However, Lattimore and Szepesvári [2019a,b] have proved that locally observable games enjoy
Θ(T 1/2) minimax regret, regardless of the existence of duplicate actions. This shows the minimax
regret for P@n is

R∗
T = Θ(T 1/2) for 1 ≤ k ≤ m.

Discussion. We note that Chaudhuri and Tewari [2017] only showed O(T 2/3) regret rates for P@n,
so this result gives improvements over all values of k, including the practically relevant cases when k
is small. In the next section, we will also give an efficient algorithm that realizes this regret rate.

8 Efficient Algorithm for Obtaining Minimax Regret Rate for P@n

Lattimore and Szepesvári [2019a] showed an algorithm NEIGHBORHOODWATCH2 that achieves
Θ̃(T 1/2) minimax regret for all finite partial monitoring games with local observability, including
games with duplicate or degenerate actions.5 In particular, they showed that NEIGHBORHOOD-
WATCH2 achieves Θ(T 1/2) minimax regret when there are no degenerate actions.6 However, directly
applying this algorithm to P@n would be intractable, since the algorithm has to spend Ω(poly(K))
time per round, where the number of actions K equals m! in our setting with P@n.

We provide a modification before applying the algorithm NEIGHBORHOODWATCH2 so that it spends
only O(poly(m)) time per round and obtains a minimax regret rate of Θ(T 1/2). Thus, it is more
efficient. We note that since top-k (for k > 1) feedback contains strictly more information than top-1
feedback does, it suffices to give an efficient algorithm for P@n with top-1 feedback which we will
show in the following. We first give a high-level idea of why we can significantly reduce the time
complexity from exponential in m to polynomial in m. It has to do with the structure of the game for
P@n.

Lemma 10 says that P@n only cares about how action σ partitions [m] into sets A and B; the order
of objects within A (or B) does not matter. Furthermore, each ordering of objects in A and B
corresponds to a unique action. Therefore, based on loss vectors, we can define equivalent classes
over m! actions such that all actions within a class share the same loss vector. In other words, each
class collects actions duplicated to each other. A simple calculation shows all classes have the same
number of actions, n!(m − n)!, and there are

(
m
n

)
classes. Note that

(
m
n

)
is O(mn) for any fixed

n, a polynomial of m. In real applications, n is usually very small, such as 1, 3, 5. In each of the
equivalent classes, all the actions have the same partition of [m] into sets A and B, where all objects
in A are ranked before objects in B. For top-1 feedback setting, the algorithm only receives the
relevance for the object ranked at the top. Therefore, in a class, the algorithm only needs to determine
which object from A to be placed at the top position. Clearly, there are just n choices as there are
n objects in A, so we reduce the number of actions to consider in each class from n!(m− n)! to n.

5Θ̃(·) indicates growth up to logarithmic factors.
6This result appeared in the arXiv version of Lattimore and Szepesvári [2019a]. See https://arxiv.org/

abs/1805.09247 for Lattimore and Szepesvári [2018].

9

https://arxiv.org/abs/1805.09247
https://arxiv.org/abs/1805.09247


Algorithm 1 NEIGHBORHOODWATCH2
1: Input L, H , η, γ
2: for t = 1, . . . , T do
3: For a, k ∈ C, let

4: Qtka = 1A(k)
1Nk∩A(a) exp

(
−η

∑t−1
s=1 Z̃ska

)
∑

b∈Nk∩A exp
(
−η

∑t−1
s=1 Z̃skb

) + 1D(k)
1A(a)

| A |

5: Find distribution P̃t such that P̃⊤
t = P̃⊤

t Qt

6: Compute Pt = (1− γ)P̃t +
γ
|C|1

7: Sample At ∼ Pt and receive feedback Φt

8: Compute loss-difference estimators for each k ∈ A and a ∈ Nk ∩ A:
9: Ẑtka = P̃tkv

ak(At,Φt)
PtAt

,

10: βtka = ηV 2
∑

b∈N+
ak

P̃ 2
tk

Ptb
, and

11: Z̃tka = Ẑtka − βtka

12: end for

Note that this reduction does not incur any loss of information. This is the key idea to simplify the
time complexity. We only need to keep track of a distribution to sample from n

(
m
n

)
(a polynomial of

m for any fixed n) actions, instead of sampling from m! actions.

Let C be the set of those n
(
m
n

)
actions defined above. Let A be an arbitrary largest subset of Pareto-

optimal actions from C such that A does not contain actions that are duplicates of each other. Note
that | A |=

(
m
n

)
and A contain an action from each of the equivalent classes. Let D = C \ A.

For action a, let Na be the set of actions consisting of a and a’s neighbors. To make this section
self-contained, we include the algorithm NEIGHBORHOODWATCH2 in Lattimore and Szepesvári
[2019a] with some changes so that it is consistent with our notations. See Algorithm 1.7

By the alternative definition of local observability, there exists a function vab : Σ×H → R for each
pair of neighboring actions a, b such that the requirement in Definition 8 is satisfied. For notational
convenience, let vaa = 0 for all action a. Define V = maxa,b∥vab∥∞. Since both Σ and H are
finite sets, ∥vab∥∞ is just maxσ∈Σ,s∈H | vab(σ, s) |. The following lemma shows ∥vab∥∞ ≤ 4 for
suitable choice of vab, so V can be upper bounded by 4.

Lemma 13 (Upper bound for ∥vab∥∞). For each pair of neighboring actions a, b for the ranking
loss measure (negated) P@n, there exists a function vab : Σ × H → R such that Definition 8 is
satisfied and moreover, ∥vab∥∞ = maxσ∈Σ,s∈H | vab(σ, s) | can be upper bounded by 4.

Below, we provide an upper bound on the regret when running Algorithm 1 for the top-k feedback
model with P@n.

Theorem 14 (Lattimore and Szepesvári [2018, 2019a]). Let K =| C |= n
(
m
n

)
. For top-1 feedback

model with P@n, suppose Algorithm 1 is run on G = (L,H) with η = 1
V

√
log(K)/T and γ = ηKV .

Then

E[RT ] ≤ O
(KV

ϵG

√
T log(K)

)
,

where ϵG is a constant specific to the game G, not depending on T , and V
ϵG

≤ 8m. Using a loose
bound

(
m
n

)
≤ mn, we have

E[RT ] ≤ O
(
nmn+1

√
T (log(n) + n log(m))

)
.

So the regret is upper bounded by O(poly(m) · T 1/2) for any fixed n. Moreover, the time complexity
in each round is O(poly(m)). Since top-k (for k > 1) feedback contains strictly more information
than top-1 feedback does, this result applies to the general top-k feedback model with P@n as well.

7The original NEIGHBORHOODWATCH2 algorithm, which this algorithm is based on, requires a REDIS-
TRIBUTE function at line 6 to handle degenerate actions. Since there are no degenerate actions in this game, we
leave it out.
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Before proving this theorem, the following lemma shows that 1
ϵG

can be defined as 2m in this setting.

Lemma 15 (Lemma 6 in Bartók et al. [2014], and Lemma 5 in Lattimore and Szepesvári [2019a]).
There exists a constant ϵG > 0, depending only on G, such that for all c, d ∈ A and u ∈ Cd there
exists e ∈ Nc ∩ A with

(lc − ld) · u ≤ 1

ϵG
(lc − le) · u .

Moreover, 1
ϵG

can be taken as 2m.

Proof of Theorem 14.

Proof. It is easy to see from Algorithm 1 that the time complexity in each round is O(poly(K)) =
O(poly(m)). Lemma 15 shows 1

ϵG
= 2m. From Lemma 13, we have V = maxa,b∥vab∥∞ ≤ 4.

Then V
ϵG

≤ 8m. The remaining proof follows Lattimore and Szepesvári [2018, 2019a].

Discussion. We have provided an upper bound on the regret in terms of m,n, T . Yet, doing the
same for a lower bound is tricky (a known lower bound is Ω(T 1/2)), so we leave it as future work.
Lattimore and Szepesvári [2020] has some discussion on lower bounds for locally observable partial
monitoring games in terms of the number of actions and the number of outcomes. We refer interested
readers to check for further details.

The regret bound for NEIGHBORHOODWATCH2 involves a game-dependent constant 1
ϵG

which can
be arbitrarily large [Lattimore and Szepesvári, 2019a], even though in our setting, we can upper
bound it by 2m. In the follow-up work, Lattimore and Szepesvári [2019b] established new regret
bounds that are independent of arbitrarily large game-dependent constants. However, their approach
is non-constructive. Then, Lattimore and Szepesvári [2020] provided an algorithm so that for
locally observable games without degenerate actions (as is the case in our current setting), its regret
upper bound matches the best-known information-theoretical upper bound shown in Lattimore and
Szepesvári [2019b]. When running their algorithm with our current setting, the regret upper bound is
O(K3/2

√
T log(K)), where K = n

(
m
n

)
. Comparing it with our bound O(mK

√
T log(K)) shown

in Theorem 14, we can see that our bound is better in our current setting.

Recently, new algorithms based on mirror-decent and information-directed sampling have been
proposed for partial monitoring games [Tsuchiya et al., 2020, Lattimore and György, 2021, Lattimore,
2022]. They could potentially be applied in our current setting as well.

9 Conclusion

In this work, we have successfully closed one of the most interesting open questions proposed by
Chaudhuri and Tewari [2017]: we have established a full characterization of minimax regret rates
with top-k feedback model for all k for ranking measures Pairwise Loss (PL), Discounted Cumulative
Gain (DCG) and Precision@n Gain (P@n).

For PL and DCG, we have improved the results in Chaudhuri and Tewari [2017] and ruled out the
possibility of better regret for values of k that are practically interesting. For P@n, which is widely
used in learning to rank community, we have shown a surprisingly good regret of Θ(T 1/2) for all k,
which improved the original regret O(T 2/3) in Chaudhuri and Tewari [2017]. Moreover, we have
provided an efficient algorithm that achieves this regret rate.

11



References
Nir Ailon. Improved bounds for online learning over the permutahedron and other ranking polytopes.

In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2014, volume 33 of JMLR Workshop and Conference Proceedings, pages 29–37.
JMLR.org, 2014.

András Antos, Gábor Bartók, Dávid Pál, and Csaba Szepesvári. Toward a classification of finite
partial-monitoring games. Theor. Comput. Sci., 473:77–99, 2013.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. Gambling in a rigged casino:
The adversarial multi-armed bandit problem. Electron. Colloquium Comput. Complex., TR00-068,
2000.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM J. Comput., 32(1):48–77, 2002.

Gábor Bartók, Dean P. Foster, Dávid Pál, Alexander Rakhlin, and Csaba Szepesvári. Partial monitor-
ing - classification, regret bounds, and algorithms. Math. Oper. Res., 39(4):967–997, 2014.

Nicolò Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Regret minimization under partial monitoring.
Math. Oper. Res., 31(3):562–580, 2006.

Sougata Chaudhuri and Ambuj Tewari. Online learning to rank with top-k feedback. J. Mach. Learn.
Res., 18:103:1–103:50, 2017.

Robert D. Kleinberg and Frank Thomson Leighton. The value of knowing a demand curve: Bounds
on regret for online posted-price auctions. In 44th Symposium on Foundations of Computer Science
2003), pages 594–605. IEEE Computer Society, 2003.

Tor Lattimore. Minimax regret for partial monitoring: Infinite outcomes and rustichini’s regret. In
Conference on Learning Theory, volume 178 of Proceedings of Machine Learning Research, pages
1547–1575. PMLR, 2022.

Tor Lattimore and András György. Mirror descent and the information ratio. In Conference on
Learning Theory, COLT 2021, volume 134 of Proceedings of Machine Learning Research, pages
2965–2992. PMLR, 2021.

Tor Lattimore and Csaba Szepesvári. Cleaning up the neighborhood: A full classification for
adversarial partial monitoring. CoRR, abs/1805.09247, 2018.

Tor Lattimore and Csaba Szepesvári. Cleaning up the neighborhood: A full classification for adver-
sarial partial monitoring. In Algorithmic Learning Theory, ALT 2019, volume 98 of Proceedings of
Machine Learning Research, pages 529–556. PMLR, 2019a.

Tor Lattimore and Csaba Szepesvári. An information-theoretic approach to minimax regret in partial
monitoring. In Conference on Learning Theory, COLT 2019, volume 99 of Proceedings of Machine
Learning Research, pages 2111–2139. PMLR, 2019b.

Tor Lattimore and Csaba Szepesvári. Exploration by optimisation in partial monitoring. In Conference
on Learning Theory, COLT 2020, volume 125 of Proceedings of Machine Learning Research,
pages 2488–2515. PMLR, 2020.

Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer, 2011.

Antonio Piccolboni and Christian Schindelhauer. Discrete prediction games with arbitrary feedback
and loss. In Computational Learning Theory, 14th Annual Conference on Computational Learning
Theory, COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT
2001, volume 2111 of Lecture Notes in Computer Science, pages 208–223. Springer, 2001.

Daiki Suehiro, Kohei Hatano, Shuji Kijima, Eiji Takimoto, and Kiyohito Nagano. Online prediction
under submodular constraints. In Algorithmic Learning Theory - 23rd International Conference,
ALT 2012, volume 7568 of Lecture Notes in Computer Science, pages 260–274. Springer, 2012.

Taira Tsuchiya, Junya Honda, and Masashi Sugiyama. Analysis and design of thompson sampling for
stochastic partial monitoring. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 2020.

12



A Proofs for Section 5

Proof of Lemma 1.

Proof. We first prove that the alternative definition of global observability (Definition 8) generalizes
the original definition (Definition 6). It will follow that the alternative definition of local observability
(Definition 8) generalizes the original definition (Definition 7).

Consider top-k feedback model, so each signal matrix Sk′ is 2k by 2m. Definition 6 says that a pair
of actions σi and σj is globally observable if li− lj ∈ ⊕1≤k′≤m! Col(S⊤

k′). So we can write li− lj as

li − lj =

m!∑
k′=1

2k∑
l′=1

ck′,l′(S
⊤
k′)l′ ,

where ck′,l′ ∈ R is constant, and (S⊤
k′)l′ is the l′-th column of S⊤

k′ . Define

f(σk′ , Hk′,k′′) =

2k∑
l′=1

ck′,l′(S
⊤
k′)k′′,l′ for 1 ≤ k′′ ≤ 2m , (8)

where (S⊤
k′)k′′,l′ is the element in row k′′ and column l′ of S⊤

k′ . Then li − lj can also be written as

li − lj =

m!∑
k′=1

[
f(σk′ , Hk′,1)

...
f(σk′ , Hk′,2m)

]
,

satisfying Definition 8.

Now, we prove the other direction. That is, the original definition of global observability (Definition
6) generalizes the alternative definition (Definition 8). It will follow that the original definition of
local observability (Definition 7) generalizes the alternative definition (Definition 8).

Definition 8 says that a pair of actions σi and σj is globally observable if there exists a function
f : Σ×H → R such that

m!∑
k′=1

f(σk′ , Hk′,k′′) = Li,k′′ − Lj,k′′ for all 1 ≤ k′′ ≤ 2m . (9)

Note that in this setting (online learning with top-k feedback), | Σ |= m! and | H |= 2k, so function
f has a finite domain. Using the definition of signal matrices (Definition 5), we see that in Eq. (8),

(S⊤
k′)k′′,l′ = (Sk′)l′,k′′ = 1(Hk′,k′′ = sl′) ,

where sl′ is the l′-th symbol in H. So, among all (S⊤
k′)k′′,l′ , 1 ≤ l′ ≤ 2m, exactly one of them is 1.

Therefore, we can let ck′,l′ = f(σk′ , Hk′,k′′) for l′ such that Hk′,k′′ = sl′ , and ck′,l′ = 0 otherwise.
Then, Eq. (9) can be written as

Li,k′′ − Lj,k′′ =

m!∑
k′=1

2k∑
l′=1

ck′,l′(S
⊤
k′)k′′,l′ for all 1 ≤ k′′ ≤ 2m .

So,

li − lj =

m!∑
k′=1


∑2k

l′=1 ck′,l′(S
⊤
k′)1,l′

...∑2k

l′=1 ck′,l′(S
⊤
k′)2m,l′

 =

m!∑
k′=1

2k∑
l′=1

ck′,l′(S
⊤
k′)l′ ,

satisfying Definition 6.

B Proofs for Section 6

Proof of Lemma 3.

Proof. For p ∈ ∆, li ·p =
∑2m

j=1 pj(f(σi) ·Rj) = f(σi) ·
∑2m

j=1 pjRj = f(σi) ·E[R], where the ex-
pectation is taken with respect to p. Since f(σi) is an element-wise strictly increasing transformation
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of σ−1
i , then li · p is minimized when E[R(σi(1))] ≥ E[R(σi(2))] ≥ ... ≥ E[R(σi(m))]. Therefore,

the cell of σi is Ci = {p ∈ ∆ : 1⊤p = 1,E[R(σi(1))] ≥ E[R(σi(2))] ≥ ... ≥ E[R(σi(m))]}. Note
that Ci is non-empty. Ci has only one equality constraint and hence has dimension (2m − 1). This
shows σi is Pareto-optimal.

Proof of Lemma 4.

Proof. We first prove the “if” part.

From Lemma 3, we know each of learner’s actions σi is Pareto-optimal and it has cell

Ci = {p ∈ ∆ : E[R(σi(1))] ≥ ... ≥ E[R(σi(k))]

≥ ... ≥ E[R(σi(k
′))] ≥ ... ≥ E[R(σi(m))]} .

Let σi(k) = a, σi(k + 1) = b, σj(k + 1) = a and σj(k) = b for some k ∈ [m − 1]. For all
k′ ∈ [m] \ {k, k + 1}, let σi(k

′) = σj(k
′). Then

Ci ∩ Cj = {p ∈ ∆ : E[R(σi(1))] ≥ ... ≥ E[R(σi(k))]

= E[R(σi(k + 1))] ≥ ... ≥ E[R(σi(m))]} .

Therefore, there are two equalities in Ci∩Cj : 1⊤p = 1 and
∑2m

j=1 pj(Rj(σi(k))−Rj(σi(k+1))) =
0. These two equations define two non-parallel hyperplanes, so the intersection of the two hyperplanes
has dimension (2m − 2). By Definition 4, σi and σj are neighboring actions.

We then prove the “only if” part.

Assume the condition (there is exactly ...) fails to hold. Note that σi and σj cannot be the same, so
they differ in at least two positions. Then there are two cases. 1. σi and σj differ in exactly two
positions, but the two positions are not consecutive. 2. σi and σj differ in more than two positions.

Consider case 1. Without loss of generality, assume σi and σj differ in positions k and k′ where
k′ − k > 1. Then there is a unique pair of objects {a, b} such that σi(k) = a, σi(k

′) = b, σj(k) = b
and σj(k

′) = a, and σi(l) = σj(l) for l ̸= k, k′. From Lemma 3, σi has cell
Ci = {p ∈ ∆ :E[R(σi(1))] ≥ ... ≥ E[R(σi(k))] ≥ ...

≥ E[R(σi(k
′))] ≥ ... ≥ E[R(σi(m))]} ,

and σj has cell
Cj = {p ∈ ∆ :E[R(σj(1))] ≥ ... ≥ E[R(σj(k))] ≥ ...

≥ E[R(σj(k
′))] ≥ ... ≥ E[R(σj(m))]} .

Then
Ci ∩ Cj = {p ∈ ∆ :E[R(σi(1))] ≥ ... ≥ E[R(σi(k))] ≥ ...

≥ E[R(σi(k
′))] ≥ ... ≥ E[R(σi(m))],

E[R(σj(1))] ≥ ... ≥ E[R(σj(k))] ≥ ...

≥ E[R(σj(k
′))] ≥ ... ≥ E[R(σj(m))]} .

Since
E[R(σi(k))] = E[R(σj(k

′))] = E[R(a)] ,

and
E[R(σi(k

′))] = E[R(σj(k))] = E[R(b)] ,

it follows that Ci ∩ Cj has a constraint
E[R(σi(k))] = ... = E[R(σi(k

′))] .

Since k′ − k > 1, E[R(σi(k))] = ... = E[R(σi(k
′))] has at least two equalities. Then Ci ∩Cj has at

least three equality constraints (including 1⊤p = 1), which shows Ci ∩ Cj has dimension less than
(2m − 2). Therefore, {σi, σj} is not a neighboring action pair.

Now consider case 2. If σi and σj differ in more than two positions, then there are at least two pairs
of objects such that for each pair, the relative order of the two objects in σi is different from that in
σj . Applying the argument for case 1 to case 2 shows {σi, σj} is not a neighboring action pair.
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Proof of Lemma 5.

Proof. By definition of neighborhood action set, N+
i,j = {k : 1 ≤ k ≤ m!, Ci ∩ Cj ⊆ Ck}.

Bartók et al. [2014] mentions that if N+
i,j contains some other action σk, then either Ck = Ci,

Ck = Cj , or Ck = Ci ∩ Cj . From Lemma 3, for RL each of learner’s actions is Pareto-optimal,
so dim(Ck) = 2m − 1. This shows Ck ̸= Ci ∩ Cj . To see Ck ̸= Ci, assume for contraction that
Ck = Ci. Then this means that both actions σi and σk are optimal under p, ∀p ∈ Ck, which implies
0 = li · p − lk · p = p · (li − lk) for all p ∈ Ck. For RL, li ̸= lk for i ̸= k. Moreover, li − lk
is independent of 1 for i ̸= k because each action is Pareto-optimal. Then p · (li − lk) = 0 for
all p ∈ Ck would impose another equality constraint on Ck, so dim(Ck) ≤ 2m − 2. We know
dim(Ck) = 2m − 1, a contraction. This shows Ck ̸= Ci. Similarly, we have Ck ̸= Cj . Therefore,
N+

i,j = {i, j} and ⊕k∈N+
i,j

Col(S⊤
k ) = Col(S⊤

i )⊕ Col(S⊤
j ).

Proof of Theorem 6.

Proof. Part 1: We first prove the local observability fails for k = 1, ...,m− 2. It suffices to show
the local observability fails for k = m− 2 because top-k feedback has strictly more information than
top k′ feedback does for k′ < k.

Note that for the signal matrix for the top-k feedback model (defined according to Definition 5) when
k = m− 2, each row has exactly 4 ones and each column has exactly 1 one.

Consider two actions σ1 = 1, 2, 3, ...,m− 2,m− 1,m and σ2 = 1, 2, 3, ...,m− 2,m,m− 1. That
is, σ1 gives object i rank i for 1 ≤ i ≤ m. σ2 gives object i rank i for 1 ≤ i ≤ m− 2, object m rank
m− 1 and object m− 1 rank m. By Lemma 4, σ1 and σ2 are neighboring actions.

Inspired by observations from Remark 2, we form 2m−2 groups of 4 relevance vectors such that within
each group, the relevance vectors only differ at object m− 1 and m. Correspondingly, we divide the
vector l1− l2 into 2m−2 groups. Then each group is [0, fs(m)−fs(m−1), fs(m−1)−fs(m), 0]
(see Remark 2). For signal matrices S1 and S2, we can also form 2m−2 groups of 4 columns
accordingly. For k = m− 2, the signal matrix is of size 2m−2 × 2m, and in this case, σ1 and σ2 have
the same signal matrix S = S1 = S2 because σ1 and σ2 have exactly the same feedback no matter
what the relevance vector is. Now in each group, there are only two types of rows of S, namely
[0 0 0 0] and [1 1 1 1]. Table 1 shows l1 − l2 and two types of rows of S for each group. Since fs

is strictly increasing, it is clear that l1 − l2 /∈ Col(S⊤). This shows the local observability fails for
k = m− 2.

R(m− 1) = 0 R(m− 1) = 0 R(m− 1) = 1 R(m− 1) = 1
R(m) = 0 R(m) = 1 R(m) = 0 R(m) = 1

l1 − l2 0 fs(m)− fs(m− 1) fs(m− 1)− fs(m) 0

rows of S 1 1 1 1
0 0 0 0

Table 1: Part 1, within the group, R(c) is the same for all c ̸= m− 1,m. See proof of Theorem 6 for
more details.

Part 2: We then prove the local observability holds for k = m− 1,m. Again, it suffices to show the
local observability holds for k = m− 1. (Note that for k = m, the game has bandit feedback, and
thus is locally observable as in Section 2.1 of Bartók et al. [2014].)

Note that for the signal matrix when k = m− 1, each row has exactly 2 ones and each column has
exactly 1 one.

Consider neighboring action pair {σi, σj}. Let {a, b} be a pair of objects as in Remark 2. We proceed
similarly as in Part 1. We form 2m−2 groups of 4 relevance vectors such that within each group,
the relevance vectors only differ at object a and b. Correspondingly, we divide the vector li − lj
into 2m−2 groups. Then each group is [0, fs(k′ + 1)− fs(k′), fs(k′)− fs(k′ + 1), 0]. For signal
matrices Si and Sj , we can also form 2m−2 groups of 4 columns accordingly. Then there are two
cases:
(1) Neither a nor b is ranked last by σi or σj , so the relevance for a and the relevance for b are both
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revealed through feedback. Concatenate Si and Sj by row and denote the resultant matrix by S. S is
of size 2m × 2m. Now in each group, there are only five types of rows of S, as shown in Table 2. It is
clear that the piece [0, fs(k′ + 1) − fs(k′), fs(k′) − fs(k′ + 1), 0] is in the row space of S. In
this case, li − lj ∈ Col(S⊤

i )⊕ Col(S⊤
j ).

(2) Either a or b is ranked last by σi or σj , so only one of the relevance for a and the relevance for
b is revealed through feedback. Concatenate Si and Sj by row and denote the resultant matrix by
S. S is of size 2m × 2m. Now in each group, there are only five types of rows of S, as shown in
Table 3. The piece [0, fs(k′ +1)− fs(k′), fs(k′)− fs(k′ +1), 0] is in the row space of S because
[0, fs(k′ +1)− fs(k′), fs(k′)− fs(k′ +1), 0] = (fs(k′ +1)− fs(k′))[1 1 0 0]− (fs(k′ +1)−
fs(k′))[1 0 1 0]. In this case, li − lj ∈ Col(S⊤

i )⊕ Col(S⊤
j ).

R(a) = 0 R(a) = 0 R(a) = 1 R(a) = 1
R(b) = 0 R(b) = 1 R(b) = 0 R(b) = 1

li − lj 0 fs(k′ + 1)− fs(k′) fs(k′)− fs(k′ + 1) 0

rows of S

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

Table 2: Part 2 (1), within the group, R(c) is the same for all c ̸= a, b. See proof of Theorem 6 for
more details.

R(a) = 0 R(a) = 0 R(a) = 1 R(a) = 1
R(b) = 0 R(b) = 1 R(b) = 0 R(b) = 1

li − lj 0 fs(k′ + 1)− fs(k′) fs(k′)− fs(k′ + 1) 0

rows of S

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
0 0 0 0

Table 3: Part 2 (2), within the group, R(c) is the same for all c ̸= a, b. See proof of Theorem 6 for
more details.

In either case, we have li − lj ∈ Col(S⊤
i )⊕ Col(S⊤

j ), so {σi, σj} is locally observable. Hence the
local observability holds, concluding the proof.

C Proofs for Section 7

Proof of Lemma 9.

Proof. The negated P@n is defined as −P@n(σ,R) = f(σ) · R where f(σ) = [−1(σ−1(1) ≤
n), ...,−1(σ−1(m) ≤ n)]. For any p ∈ ∆, we have li · p =

∑2m

j=1 pj(f(σi) · Rj) = f(σi) ·
(
∑2m

j=1 pjRj) = f(σi) · E[R], where the expectation is taken with respect to p. Let Ai = {a :

1(σ−1
i (a) ≤ n) = 1} and Bi = {b : 1(σ−1

i (b) ≤ n) = 0} be subsets of {1, 2, ...,m}. Ai is the set
of objects contributing to the loss while Bi is the set of objects not contributing to the loss. Then
li · p is minimized when the expected relevances of objects are such that E[R(a)] ≥ E[R(b)] for
all a ∈ Ai, b ∈ Bi. Therefore, Ci = {p ∈ ∆ : 1⊤p = 1,E[R(a)] ≥ E[R(b)],∀a ∈ Ai,∀b ∈ Bi}.
Ci has only one equality constraint and hence has dimension (2m − 1). This shows action σi is
Pareto-optimal.

Proof of Lemma 10.
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Proof. For the “if” part, assume the condition (there is exactly ...) holds. From Lemma 9, action σi

is Pareto-optimal and its cell is Ci = {p ∈ ∆ : E[R(x)] ≥ E[R(y)],∀x ∈ Ai, y ∈ Bi}. Action σj

is also Pareto-optimal and its cell is Cj = {p ∈ ∆ : E[R(x)] ≥ E[R(y)],∀x ∈ Aj , y ∈ Bj}. Then
Ci ∩ Cj = {p ∈ ∆ : E[R(a)] = E[R(b)] and E[R(x)] ≥ E[R(y)],∀x ∈ Ai, y ∈ Bi and E[R(z)] ≥
E[R(w)],∀z ∈ Aj , w ∈ Bj}. Ci ∩ Cj has only two equality constraints (counting 1⊤p = 1), and
hence it has dimension (2m − 2). Therefore, {σi, σj} is a neighboring action pair.

For the “only if” part, assume the condition (there is exactly ...) does not hold. Note that for negated
P@n, | Ai |= n and | Bi |= m − n for all action σi. There are two cases. 1. | Ai \ Aj |= 0. 2.
| Ai \Aj |> 1.

For the first case, if | Ai \Aj |= 0, then Ai = Aj and Bi = Bj . Then Ci ∩ Cj = Ci has dimension
(2m − 1) because σi is Pareto-optimal by Lemma 9. Thus, in this case, {σi, σj} is not a neighboring
action pair.

For the second case, if | Ai \Aj |> 1, then there are at least two pair of objects {a, b} and {a′, b′}
such that a, a′ ∈ Ai, a, a′ ∈ Bj , b, b′ ∈ Bi, and b, b′ ∈ Aj . Following the arguments in the “if” part,
it is easy to show that Ci ∩ Cj has at least three equality constraints (counting 1⊤p = 1), and hence
it has dimension less than (2m − 2). Thus, in this case, {σi, σj} is not a neighboring action pair.

Proof of Lemma 11.

Proof. By definition of neighborhood action set, N+
i,j = {k : 1 ≤ k ≤ m!, Ci ∩ Cj ⊆ Ck}.

Bartók et al. [2014] mentions that if N+
i,j contains some other action σk, then either Ck = Ci,

Ck = Cj , or Ck = Ci ∩ Cj . From Lemma 9, every action is Pareto-optimal for negated P@n, so
dim(Ck) = 2m − 1. Hence Ck ̸= Ci ∩ Cj . If Ck = Ci, then both actions σi and σk are optimal
under p, ∀p ∈ Ck, which implies 0 = li · p − lk · p = p · (li − lk) for all p ∈ Ck. Since Ck has
dimension (2m − 1), p · (li − lk) = 0 cannot impose an equality constraint on Ck. Therefore, li = lk.
Similarly, if Ck = Cj , then lj = lk. This shows N+

i,j = {k : 1 ≤ k ≤ m!, lk = li or lk = lj}.

Proof of Theorem 12.

Proof. It suffices to show the local observability holds for k = 1 because there is strictly more
information for the game with k > 1 than that with k = 1.

Note that for the signal matrix when k = 1, each row has exactly 2m−1 ones and each column has
exactly 1 one.

Consider neighboring action pair {σi, σj}. Let {a, b} be a pair of objects as in Remark 3. We form
2m−2 groups of 4 relevance vectors such that within each group, the relevance vectors only differ at
object a and b. Correspondingly, we divide the vector li − lj into 2m−2 groups. Then each group
is [0 1 − 1 0]. For signal matrices Sl where l ∈ N+

i,j , we can also form 2m−2 groups of 4 columns
accordingly. Then concatenate all 2n!(m − n)! 8 signal matrices Sl where l ∈ N+

i,j by row and
denote the resultant matrix by S. S is of size 4n!(m − n)! × 2m. Now in each group, there are
only five types of rows of S, as shown in Table 4. [1 1 0 0] and [0 0 1 1] correspond to the action
σl with l ∈ N+

i,j that puts object a rank 1. [1 0 1 0] and [0 1 0 1] correspond to the action σl′

with l′ ∈ N+
i,j that puts object b rank 1. The piece [0 1 − 1 0] is in the row space of S because

[0 1 − 1 0] = 2[1 1 0 0] + [0 0 1 1]− 2[1 0 1 0]− [0 1 0 1]. Therefore, li − lj ∈ ⊕l∈N+
i,j

Col(S⊤
l ),

so {σi, σj} is locally observable and the local observability holds for P@n.

8See Remark 4 for how this number is calculated.
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R(a) = 0 R(a) = 0 R(a) = 1 R(a) = 1
R(b) = 0 R(b) = 1 R(b) = 0 R(b) = 1

li − lj 0 1 -1 0

rows of S

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
0 0 0 0

Table 4: P@n, within the group, R(c) is the same for all c ̸= a, b. See proof of Theorem 12 for more
details.

D Proofs for Section 8

In this section, the loss function is negated P@n unless otherwise stated. We consider top-1 feedback
model as described in Section 8.

Proof of Lemma 13.

Proof. Lemma 11 shows for neighboring action pair {a, b}, the neighborhood action set is N+
a,b =

{k : 1 ≤ k ≤ m!, lk = la or lk = lb} where la and lb are loss vectors of actions a and b respectively.

For top-1 feedback model, each signal matrix Sk′ is 2 by 2m. By definition of local observability
(Definition 7), we can write la − lb as

la − lb =
∑

k′∈N+
a,b

[
ck′,1(S

⊤
k′)1 + ck′,2(S

⊤
k′)2

]
,

where ck′,l′ ∈ R is constant, and (S⊤
k′)l′ is the l′-th column of S⊤

k′ , for l′ = 1, 2. Define

vab(σk′ , Hk′,k′′) =
[
ck′,1(S

⊤
k′)k′′,1 + ck′,2(S

⊤
k′)k′′,2

]
, for 1 ≤ k′′ ≤ 2m , (10)

where (S⊤
k′)k′′,l′ is the element in row k′′ and column l′ of S⊤

k′ , for l′ = 1, 2. Then la − lb can also
be written as

la − lb =
∑

k′∈N+
a,b

 vab(σk′ , Hk′,1)
...

vab(σk′ , Hk′,2m)

 .

Now back to Equation (10), (S⊤
k′)k′′,1 and (S⊤

k′)k′′,2 are binary for all k′, k′′. From the proof for
Theorem 12, we can choose ck′,1 and ck′,2 such that | ck′,1 |≤ 2 and | ck′,2 |≤ 2 for all k′. Then it
follows that ∥vab∥∞ = maxσ∈Σ,s∈H | vab(σ, s) |≤ 4, completing the proof.

Proof of Lemma 15.

Proof. We follow the proof for Lemma 5 in Lattimore and Szepesvári [2019a] with some modifica-
tions to ensure 1

ϵG
is in the order of poly(m).

Since u ∈ Cd, we have (lc − ld) · u ≥ 0. The result is trivial if c, d are neighbors or (lc − ld) · u = 0.

Cc

CdCe

v

u

w

Figure 1: Illustrating proof for Lemma 15, adopted from Lattimore and Szepesvári [2019a].
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Now assume c, d are not neighbors and (lc − ld) · u > 0. Let v be the centroid of Cc. Consider the
line segment connecting u and v. Then let w be the first point on this line segment for which there
exists e ∈ Nc ∩ A with w ∈ Ce (see Figure 1). w is well-defined by the Jordan-Brouwer separation
theorem, and e is well-defined because A is a duplicate-free set of Pareto-optimal classes.

Recall that each class c′ ∈ A corresponds to a unique partition of [m] into two subsets Ac′ and Bc′

such that only objects in Ac′ contribute to the calculation of negated P@n. For each c′ ∈ A, we can
define f(c′) = [1(1 ∈ Ac′), ...,1(m ∈ Ac′)]. Let R = [R1, ..., R2m ] collect all relevance vectors:
the i-th column of R is the i-th relevance vector Ri. Then we can rewrite (lc′ − ld′) · u′ as

(lc′ − ld′) · u′ = (−f(c′) ·R+ f(d′) ·R) · u′ = (−f(c′) + f(d′)) ·Ru′ ,

for all c′, d′ ∈ A and u′ ∈ ∆. Note that Ru′ = Eu′ [R] is the expected relevance vector under u′.

Now, using twice (lc − le) · w = 0, we calculate

(lc − le) · u = (lc − le) · (u− w)

= (−f(c) + f(e)) ·R(u− w)

=
∥R(u− w)∥2
∥R(w − v)∥2

(−f(c) + f(e)) ·R(w − v)

=
∥R(u− w)∥2
∥R(w − v)∥2

(lc − le) · (w − v)

=
∥R(u− w)∥2
∥R(w − v)∥2

(le − lc) · v > 0

(11)

where the third equality uses that w ̸= v is a point of the line segment connecting v and u, so that
w− v and u−w are parallel and have the same direction. Note that (le − lc) · v > 0 because c, e are
different Pareto-optimal classes and v is the centroid of Cc. ∥R(w − v)∥2 = ∥Ew[R]− Ev[R]∥2 > 0
because otherwise, Ew[R] = Ev[R] would imply (lc − le) · v = (−f(c) + f(e)) · Ev[R] =
(−f(c) + f(e)) · Ew[R] = 0, contradicting that v is the centroid of Cc. To see ∥R(u− w)∥2 > 0,
we recalculate (lc − le) · u in another way

(lc − le) · u = (lc − le) · (u− w)

=
∥u− w∥2
∥w − v∥2

(lc − le) · (w − v)

=
∥u− w∥2
∥w − v∥2

(le − lc) · v > 0 . (12)

The inequality in Equation (12) holds because ∥u− w∥2 > 0 (since (lc−ld)·u > 0) and ∥w − v∥2 >
0. Therefore, ∥R(u− w)∥2 > 0 in Equation (11) also holds.
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Let vc′ be the centroid of Cc′ for any c′ ∈ A. Then we have
(lc − ld) · u
(lc − le) · u

=
(lc − ld) · (w + u− w)

(lc − le) · u
(a)
<

(lc − le) · w + (lc − ld) · (u− w)

(lc − le) · u
(b)
=

(lc − ld) · (u− w)

(lc − le) · u

=
(−f(c) + f(d)) ·R(u− w)

(−f(c) + f(e)) ·Ru

(c)
=

∥R(w − v)∥2 (−f(c) + f(d)) ·R(u− w)

∥R(u− w)∥2 (le − lc) · v
(d)
≤

∥R(w − v)∥2 ∥−f(c) + f(d)∥2
(le − lc) · v

=
∥Ew[R]− Ev[R]∥2 ∥−f(c) + f(d)∥2

(le − lc) · v
(e)
≤ m

minc′∈A mind′∈Nc′∩A(ld′ − lc′) · vc′
where (a) follows since (lc − ld) · w < 0 = (lc − le) · w, (b) follows since (lc − le) · w = 0,
(c) follows by Equation (11), (d) follows by Cauchy-Schwarz. Note that 0 ⪯ E[R] ⪯ 1, we can
bound ∥Ew[R]− Ev[R]∥2 by

√
m. Since both f(c) and f(d) are binary vectors, we can bound

∥−f(c) + f(d)∥2 by
√
m. Then (e) follows since v is the centroid of Cc and (le − lc) · v ≥

minc′∈A mind′∈Nc′∩A(ld′ − lc′) · vc′ (vc′ is the centroid of Cc′ ).

Finally, we want to find a lower bound for
min
c′∈A

min
d′∈Nc′∩A

(ld′ − lc′) · vc′ = min
c′∈A

min
d′∈Nc′∩A

(−f(d′) + f(c′)) · Evc′ [R] .

Note that for any c′ ∈ A, Evc′ [R(i)] = 1 if object i ∈ Ac′ and 1
2 otherwise (by the symmetry property

of the centroid vc′ of Cc′ ). Along with observations from Remark 3, we have

(−f(d′) + f(c′)) · Evc′ [R] =
1

2
,

for all c′ ∈ A and d′ ∈ Nc′ ∩ A. Therefore, we can bound
m

minc′∈A mind′∈Nc′∩A(ld′ − lc′) · vc′
≤ 2m :=

1

ϵG
. (13)

1
ϵG

is clearly a polynomial of m.
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